scholarly journals A Hybrid Planning Approach Based on MPC and Parametric Curves for Overtaking Maneuvers

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 595
Author(s):  
Ray Lattarulo ◽  
Joshué Pérez Rastelli

Automated Driving Systems (ADS) have received a considerable amount of attention in the last few decades, as part of the Intelligent Transportation Systems (ITS) field. However, this technology still lacks total automation capacities while keeping driving comfort and safety under risky scenarios, for example, overtaking, obstacle avoidance, or lane changing. Consequently, this work presents a novel method to resolve the obstacle avoidance and overtaking problems named Hybrid Planning. This solution combines the passenger’s comfort associated with the smoothness of Bézier curves and the reliable capacities of Model Predictive Control (MPC) to react against unexpected conditions, such as obstacles on the lane, overtaking and lane-change based maneuvers. A decoupled linear-model was used for the MPC formulation to ensure short computation times. The obstacles and other vehicles’ information are obtained via V2X (vehicle communications). The tests were performed in an automated Renault Twizy vehicle and they have shown good performance under complex scenarios involving static and moving obstacles at a maximum speed of 60 kph.

1999 ◽  
Vol 26 (6) ◽  
pp. 840-851 ◽  
Author(s):  
A F Al-Kaisy ◽  
J A Stewart ◽  
M Van Aerde

Microscopic traffic simulation models are being increasingly used to evaluate Intelligent Transportation Systems (ITS) strategies and to complement empirical data in developing new analytical procedures and methodologies. Lane changing rules are an essential element of any microscopic traffic simulation model. While most of these rules are based on theories and hypotheses, to date no attempt has been made to investigate the consistency of lane changing behaviour from microscopic simulation with empirical observations. The research presented in this paper examined this consistency at freeway weaving areas using empirical data. These data were collected in the late 1980s at several major freeway weaving sections in the State of California. The microscopic traffic simulation model INTEGRATION was used to perform simulation experiments in this research. Vehicle distributions, both total and by type of movement, were used as measures to investigate the lane changing activity that took place at these freeway areas. This examination revealed significant agreement between patterns of lane changing behaviour as observed in the field and as reproduced by microscopic simulation. Most quantitative discrepancies were shown to be a function of user-specified input data or due to some inherent limitations in the empirical data.Key words: simulation, lane changing, weaving, freeways.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Shen Li ◽  
Keqi Shu ◽  
Chaoyi Chen ◽  
Dongpu Cao

AbstractPlanning and decision-making technology at intersections is a comprehensive research problem in intelligent transportation systems due to the uncertainties caused by a variety of traffic participants. As wireless communication advances, vehicle infrastructure integrated algorithms designed for intersection planning and decision-making have received increasing attention. In this paper, the recent studies on the planning and decision-making technologies at intersections are primarily overviewed. The general planning and decision-making approaches are presented, which include graph-based approach, prediction base approach, optimization-based approach and machine learning based approach. Since connected autonomous vehicles (CAVs) is the future direction for the automated driving area, we summarized the evolving planning and decision-making methods based on vehicle infrastructure cooperative technologies. Both four-way signalized and unsignalized intersection(s) are investigated under purely automated driving traffic and mixed traffic. The study benefit from current strategies, protocols, and simulation tools to help researchers identify the presented approaches’ challenges and determine the research gaps, and several remaining possible research problems that need to be solved in the future.


Author(s):  
Paula A. Desmond ◽  
Peter A. Hancock ◽  
Janelle L. Monette

A driving simulator study investigated the effect of automation of the driving task on performance under fatiguing driving conditions. In the study, drivers performed both a manual drive, in which they had full control over the driving task, and an automated drive, in which the vehicle was controlled by an automated driving system. During both drives, three perturbing events occurred at early, intermediate, and late phases in the drives: in the automated drive, a failure in automation caused the vehicle to drift toward the edge of the road; in the manual drive, wind gusts resulted in the vehicle drifting in the same direction and magnitude as the “drifts” in the automated drive. Following automation failure, drivers were forced to control the vehicle manually until the system became operational again. Drivers’ lateral control of the vehicle was assessed during three phases of manual control in both drives. The results indicate that performance recovery was better when drivers had full manual control of the vehicle throughout the drive, rather than when drivers were forced to drive manually following automation failure. Drivers also experienced increased tiredness, and physical and perceptual fatigue symptoms following both drives. The findings have important implications for the design of intelligent transportation systems. Systems that reduce the driver’s perceptions of task demands of driving are likely to undermobilize effort in fatigued drivers. Thus, the results strongly support the contention that human-centered transportation strategies, in which the driver is involved in the driving task, are superior to total automation.


2020 ◽  
Vol 39 (6) ◽  
pp. 8357-8364
Author(s):  
Thompson Stephan ◽  
Ananthnarayan Rajappa ◽  
K.S. Sendhil Kumar ◽  
Shivang Gupta ◽  
Achyut Shankar ◽  
...  

Vehicular Ad Hoc Networks (VANETs) is the most growing research area in wireless communication and has been gaining significant attention over recent years due to its role in designing intelligent transportation systems. Wireless multi-hop forwarding in VANETs is challenging since the data has to be relayed as soon as possible through the intermediate vehicles from the source to destination. This paper proposes a modified fuzzy-based greedy routing protocol (MFGR) which is an enhanced version of fuzzy logic-based greedy routing protocol (FLGR). Our proposed protocol applies fuzzy logic for the selection of the next greedy forwarder to forward the data reliably towards the destination. Five parameters, namely distance, direction, speed, position, and trust have been used to evaluate the node’s stability using fuzzy logic. The simulation results demonstrate that the proposed MFGR scheme can achieve the best performance in terms of the highest packet delivery ratio (PDR) and minimizes the average number of hops among all protocols.


2018 ◽  
Vol 4 (10) ◽  
pp. 10
Author(s):  
Ankur Mishra ◽  
Aayushi Priya

Transportation or transport sector is a legal source to take or carry things from one place to another. With the passage of time, transportation faces many issues like high accidents rate, traffic congestion, traffic & carbon emissions air pollution, etc. In some cases, transportation sector faced alleviating the brutality of crash related injuries in accident. Due to such complexity, researchers integrate virtual technologies with transportation which known as Intelligent Transport System. Intelligent Transport Systems (ITS) provide transport solutions by utilizing state-of-the-art information and telecommunications technologies. It is an integrated system of people, roads and vehicles, designed to significantly contribute to improve road safety, efficiency and comfort, as well as environmental conservation through realization of smoother traffic by relieving traffic congestion. This paper aims to elucidate various aspects of ITS - it's need, the various user applications, technologies utilized and concludes by emphasizing the case study of IBM ITS.


2020 ◽  
Vol 19 (11) ◽  
pp. 2116-2135
Author(s):  
G.V. Savin

Subject. The article considers functioning and development of process flows of transportation and logistics system of a smart city. Objectives. The study identifies factors and dependencies of the quality of human life on the organization and management of stream processes. Methods. I perform a comparative analysis of previous studies, taking into account the uniquely designed results, and the econometric analysis. Results. The study builds multiple regression models that are associated with stream processes, highlights interdependent indicators of temporary traffic and pollution that affect the indicator of life quality. However, the identified congestion indicator enables to predict the time spent in traffic jams per year for all participants of stream processes. Conclusions. The introduction of modern intelligent transportation systems as a component of the transportation and logistics system of a smart city does not fully solve the problems of congestion in cities at the current rate of urbanization and motorization. A viable solution is to develop cooperative and autonomous intelligent transportation systems based on the logistics approach. This will ensure control over congestion, the reduction of which will contribute to improving the life quality of people in urban areas.


Sign in / Sign up

Export Citation Format

Share Document