scholarly journals Dual-Mode Radar Sensor for Indoor Environment Mapping

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2469
Author(s):  
Seongwook Lee ◽  
Song-Yi Kwon ◽  
Bong-Jun Kim ◽  
Hae-Seung Lim ◽  
Jae-Eun Lee

In this paper, we introduce mapping results in an indoor environment based on our own developed dual-mode radar sensor. Our radar system uses a frequency-modulated continuous wave (FMCW) with a center frequency of 62 GHz and a multiple-input multiple-output antenna system. In addition, the FMCW radar sensor we designed is capable of dual-mode detection, which alternately transmits two waveforms using different bandwidths within one frame. The first waveform is for long-range detection, and the second waveform is for short-range detection. This radar system is mounted on a small robot that moves in indoor environments such as rooms or hallways, and the radar and the robot send and receive necessary information to each other. The radar estimates the distance, velocity, and angle information of targets around the radar-equipped robot. Then, the radar receives information about the robot’s motion from the robot, such as its speed and rotation angle. Finally, by combining the motion information and the detection results, the radar-equipped robot maps the indoor environment while finding its own position. Compared to the actual map data, the radar-based mapping is effectively achieved through the radar system we developed.

Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2758
Author(s):  
Hyunmin Jeong ◽  
Sangkil Kim

This paper presents an educational low-cost C-band frequency-modulated continuous wave (FMCW) radar system for use in indoor through-wall metal detection. Indoor remote-sensing applications, such as through-wall detection and positioning, are essential for the comprehensive realization of the internet of things or super-connected societies. The proposed system comprises a two-stage radio-frequency power amplifier, a voltage-controlled oscillator, circuits for frequency modulation and system synchronization, a mixer, a 3-dB power divider, a low-noise amplifier, and two cylindrical horn antennas (Tx/Rx antennas). The antenna yields gain values in the 6.8~7.8 range when operating in the 5.83~5.94 GHz frequency band. The backscattered Tx signal is sampled at 4.5 kHz using the Arduino UNO analog-to-digital converter. Thereafter, the sampled signal is transferred to the MATLAB platform and analyzed using a customized FMCW radar algorithm. The proposed system is built using commercial off-the-shelf components, and it can detect targets within a 56.3 m radius in indoor environments. In this study, the system could successfully detect targets through a 4 cm-thick ply board with a measurement accuracy of less than 10 cm.


2013 ◽  
Vol 5 (3) ◽  
pp. 309-317 ◽  
Author(s):  
Christian Bredendiek ◽  
Nils Pohl ◽  
Timo Jaeschke ◽  
Sven Thomas ◽  
Klaus Aufinger ◽  
...  

In this paper a monostatic frequency-modulated continuous-wave (FMCW) radar system around a center frequency of 24 GHz with a wide tuning range of 8 GHz (≈33%) is presented. It is based on a fully integrated single-channel SiGe transceiver chip. The chip architecture consists of a fundamental VCO, a receive mixer, a divider chain, and coupling/matching networks. All circuits, except for the divider, are designed with the extensive use of on-chip monolithic integrated spiral inductors. The chip is fabricated in a SiGe bipolar production technology which offers an fT of 170 GHz and fmax of 250 GHz. The phase noise at 1 MHz offset is better than −100 dBc/Hz over the full-tuning range of 8 GHz and a phase noise of better than −111 dBc/Hz is achieved at 27 GHz. The peak output power of the chip is −1 dBm while the receive mixer offers a 1 dBm input referred compression point to keep it from being saturated. The chip has a power consumption of 245 mW and uses an area of 1.51 mm2. The FMCW radar system achieves a power consumption below 1.6 W. Owing to the high stability of the sensor, high accuracy mesaurements with a range error <±250 µm were achieved. The standard deviation between repeated measurements of the same target is 0.6 µm and the spatial resolution is 28 mm.


2020 ◽  
Vol 216 (8) ◽  
Author(s):  
Svein-Erik Hamran ◽  
David A. Paige ◽  
Hans E. F. Amundsen ◽  
Tor Berger ◽  
Sverre Brovoll ◽  
...  

AbstractThe Radar Imager for Mars’ Subsurface Experiment (RIMFAX) is a Ground Penetrating Radar on the Mars 2020 mission’s Perseverance rover, which is planned to land near a deltaic landform in Jezero crater. RIMFAX will add a new dimension to rover investigations of Mars by providing the capability to image the shallow subsurface beneath the rover. The principal goals of the RIMFAX investigation are to image subsurface structure, and to provide information regarding subsurface composition. Data provided by RIMFAX will aid Perseverance’s mission to explore the ancient habitability of its field area and to select a set of promising geologic samples for analysis, caching, and eventual return to Earth. RIMFAX is a Frequency Modulated Continuous Wave (FMCW) radar, which transmits a signal swept through a range of frequencies, rather than a single wide-band pulse. The operating frequency range of 150–1200 MHz covers the typical frequencies of GPR used in geology. In general, the full bandwidth (with effective center frequency of 675 MHz) will be used for shallow imaging down to several meters, and a reduced bandwidth of the lower frequencies (center frequency 375 MHz) will be used for imaging deeper structures. The majority of data will be collected at regular distance intervals whenever the rover is driving, in each of the deep, shallow, and surface modes. Stationary measurements with extended integration times will improve depth range and SNR at select locations. The RIMFAX instrument consists of an electronic unit housed inside the rover body and an antenna mounted externally at the rear of the rover. Several instrument prototypes have been field tested in different geological settings, including glaciers, permafrost sediments, bioherme mound structures in limestone, and sedimentary features in sand dunes. Numerical modelling has provided a first assessment of RIMFAX’s imaging potential using parameters simulated for the Jezero crater landing site.


2019 ◽  
Vol 19 (2) ◽  
pp. 38
Author(s):  
Hana Pratiwi ◽  
Mujib R. Hidayat ◽  
A. A. Pramudita ◽  
Fiky Y. Suratman

Frequency Modulated Continuous Wave (FMCW) radar system has been developed and applied for various needs. Based on the conventional FMCW radar concept, a large bandwidth is needed to detect small displacements in the chest wall or abdomen related with respiratory activity. To overcome the need for large bandwidths in detecting vital respiratory signs, several improvements to the FMCW system are proposed in this paper. The phase-detection concept has been elaborated in improving the capability of FMCW to detect the small displacement. In developing multi-target detection capability, range detection capability through beat frequency output needs to be combined with the phase-detection method. Theoretical and simulation studies were performed to investigate the concept of combining range detection and phase detection for detecting respiration on multi-target. The results show that the proposed method is well-performed in detecting the multi-target respiration in high noise reflection.


Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 573 ◽  
Author(s):  
Onur Toker ◽  
Suleiman Alsweiss

In this paper, we propose a novel 77 GHz automotive radar sensor, and demonstrate its cyberattack resilience using real measurements. The proposed system is built upon a standard Frequency Modulated Continuous Wave (FMCW) radar RF-front end, and the novelty is in the DSP algorithm used at the firmware level. All attack scenarios are based on real radar signals generated by Texas Instruments AWR series 77 GHz radars, and all measurements are done using the same radar family. For sensor networks, including interconnected autonomous vehicles sharing radar measurements, cyberattacks at the network/communication layer is a known critical problem, and has been addressed by several different researchers. What is addressed in this paper is cyberattacks at the physical layer, that is, adversarial agents generating 77 GHz electromagnetic waves which may cause a false target detection, false distance/velocity estimation, or not detecting an existing target. The main algorithm proposed in this paper is not a predictive filtering based cyberattack detection scheme where an “unusual” difference between measured and predicted values triggers an alarm. The core idea is based on a kind of physical challenge-response authentication, and its integration into the radar DSP firmware.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4171 ◽  
Author(s):  
Byunggil Choi ◽  
Daegun Oh ◽  
Sunwoo Kim ◽  
Jong-Wha Chong ◽  
Ying-Chun Li

In this work, a 24-GHz frequency-modulated continuous-wave (FMCW) radar system with two sectoral horn antennas and one transmitting lens antenna for long-range drone detection is presented. The present work demonstrates the detection of a quadcopter-type drone using the implemented radar system up to a distance of 1 km. Moreover, a 3D subspace-based algorithm is proposed for the joint range-azimuth-Doppler estimation of long-range drone detection. The effectiveness of the long-range drone detection is verified with the implemented radar system through a variety of experiments in outdoor environments. This is the first such demonstration for long-range drone detection with a 24-GHz FMCW radar.


Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 389
Author(s):  
Lidong Huang ◽  
Xianpeng Wang ◽  
Mengxing Huang ◽  
Liangtian Wan ◽  
Zhiguang Han ◽  
...  

The work presented in this paper is about implementing a frequency-modulated continuous wave (FMCW) multiple-input multiple-output (MIMO) positioning radar and a sparse spectrum fitting (SpSF) algorithm for range and angular measurements. First, we designed a coherent FMCW MIMO radar system working in the S-band with low power consumption that consists of four transmitter and four receiver antennas and has the ability to extend its virtual aperture; thus, this system can achieve a higher resolution than conventional phased array radars. Then, the SpSF algorithm was designed for estimating the distance and angle of the targets in the FMCW MIMO radar. Due to the fact that the SpSF algorithm can exploit the spatial sparsity diversity of a signal, the SpSF algorithm that is applied in the designed MIMO radar system can achieve a better estimation performance than the multiple signal classification (MUSIC) and Capon algorithms, especially in the context of small snapshots and low signal-to-noise ratios (SNRs). The simulated and experimental results are used to prove the effectiveness of the designed MIMO radar and the superior performance of the algorithm.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4172 ◽  
Author(s):  
Angelo Coluccia ◽  
Gianluca Parisi ◽  
Alessio Fascista

Thanks to recent technological advances, a new generation of low-cost, small, unmanned aerial vehicles (UAVs) is available. Small UAVs, often called drones, are enabling unprecedented applications but, at the same time, new threats are arising linked to their possible misuse (e.g., drug smuggling, terrorist attacks, espionage). In this paper, the main challenges related to the problem of drone identification are discussed, which include detection, possible verification, and classification. An overview of the most relevant technologies is provided, which in modern surveillance systems are composed into a network of spatially-distributed sensors to ensure full coverage of the monitored area. More specifically, the main focus is on the frequency modulated continuous wave (FMCW) radar sensor, which is a key technology also due to its low cost and capability to work at relatively long distances, as well as strong robustness to illumination and weather conditions. This paper provides a review of the existing literature on the most promising approaches adopted in the different phases of the identification process, i.e., detection of the possible presence of drones, target verification, and classification.


2010 ◽  
Vol 2010 ◽  
pp. 1-6 ◽  
Author(s):  
Wei Shen ◽  
Biyang Wen

An efficient demodulation method designed for FMCW (Frequency-Modulated Continuous Wave) radar is presented. It is a kind of modified DFT (IDFT) algorithm; the spectrum segment of interest can be easily extracted from the original signal without calculating the whole DFT/FFT. It provides fast demodulation and extraction of desired frequency bands in our HFSWR (High-Frequency Surface Wave Radar) system. The proposed approach enhances the performances of radar system and reduces the computing complexity. The new structure could also be inversely used for signal modulation. And also arbitrary sampling rate conversion could be achieved with the combination of forward and backward structure.


Sign in / Sign up

Export Citation Format

Share Document