scholarly journals Radar Imager for Mars’ Subsurface Experiment—RIMFAX

2020 ◽  
Vol 216 (8) ◽  
Author(s):  
Svein-Erik Hamran ◽  
David A. Paige ◽  
Hans E. F. Amundsen ◽  
Tor Berger ◽  
Sverre Brovoll ◽  
...  

AbstractThe Radar Imager for Mars’ Subsurface Experiment (RIMFAX) is a Ground Penetrating Radar on the Mars 2020 mission’s Perseverance rover, which is planned to land near a deltaic landform in Jezero crater. RIMFAX will add a new dimension to rover investigations of Mars by providing the capability to image the shallow subsurface beneath the rover. The principal goals of the RIMFAX investigation are to image subsurface structure, and to provide information regarding subsurface composition. Data provided by RIMFAX will aid Perseverance’s mission to explore the ancient habitability of its field area and to select a set of promising geologic samples for analysis, caching, and eventual return to Earth. RIMFAX is a Frequency Modulated Continuous Wave (FMCW) radar, which transmits a signal swept through a range of frequencies, rather than a single wide-band pulse. The operating frequency range of 150–1200 MHz covers the typical frequencies of GPR used in geology. In general, the full bandwidth (with effective center frequency of 675 MHz) will be used for shallow imaging down to several meters, and a reduced bandwidth of the lower frequencies (center frequency 375 MHz) will be used for imaging deeper structures. The majority of data will be collected at regular distance intervals whenever the rover is driving, in each of the deep, shallow, and surface modes. Stationary measurements with extended integration times will improve depth range and SNR at select locations. The RIMFAX instrument consists of an electronic unit housed inside the rover body and an antenna mounted externally at the rear of the rover. Several instrument prototypes have been field tested in different geological settings, including glaciers, permafrost sediments, bioherme mound structures in limestone, and sedimentary features in sand dunes. Numerical modelling has provided a first assessment of RIMFAX’s imaging potential using parameters simulated for the Jezero crater landing site.

2021 ◽  
Vol 13 (17) ◽  
pp. 3487
Author(s):  
Sergey I. Ivashov ◽  
Lorenzo Capineri ◽  
Timothy D. Bechtel ◽  
Vladimir V. Razevig ◽  
Masaharu Inagaki ◽  
...  

Holographic subsurface radar (HSR) is not currently in widespread usage. This is due to a historical perspective in the ground-penetrating radar (GPR) community that the high attenuation of electromagnetic waves in most media of interest and the inability to apply time-varying gain to the continuous-wave (CW) HSR signal preclude sufficient effective penetration depth. While it is true that the fundamental physics of HSR, with its use of a CW signal, does not allow amplification of later (i.e., deeper) arrivals in lossy media (as is possible with impulse subsurface radar (ISR)), HSR has distinct advantages. The most important of these is the ability to do shallow subsurface imaging with a resolution that is not possible with ISR. In addition, the design of an HSR system is simpler than for ISR due to the relatively low-tech transmitting and receiving antennae. This paper provides a review of the main principles of HSR through an optical analogy and describes possible algorithms for radar hologram reconstruction. We also present a review of the history of development of systems and applications of the RASCAN type, which is possibly the only commercially available holographic subsurface radar. Among the subsurface imaging and remote sensing applications considered are humanitarian demining, construction inspection, nondestructive testing of dielectric aerospace materials, surveys of historic architecture and artworks, paleontology, and security screening. Each application is illustrated with relevant data acquired in laboratory and/or field experiments.


Author(s):  
Sergey I. Ivashov ◽  
Lorenzo Capineri ◽  
Tim Bechtel ◽  
Masaharu Inagaki ◽  
Vladimir Razevig ◽  
...  

Holographic subsurface radar (HSR) is currently not in widespread usage. This is due to an historical perspective in the ground penetrating radar (GPR) community that the high attenuation of electromagnetic waves in most media of interest, and the inability to apply time-varying gain to the continuous wave (CW) HSR signal precludes sufficient effective penetration depth. While it is true that the fundamental physics of HSR, with its use of a CW signal, does not allow amplification of later (i.e. deeper) arrivals in lossy media (as is possible with impulse subsurface radar — ISR), HSR has distinct some distinctive advantages. The most important of these is the ability to do shallow subsurface imaging with a resolution that is not possible with ISR. In addition, the design of an HSR system is simpler than for ISR due to the relatively low-tech transmitting and receiving antennae. This paper provides a review of the main principles of HSR through an optical analogy and describes possible algorithms for radar hologram reconstruction. We also present a review of the history of development of systems and applications for HSR of the “RASCAN” type which is possibly the only holographic subsurface radar that is produced in lots. Among the subsurface imaging and remote sensing applications considered are humanitarian demining, construction inspection, surveys of historic architecture and artworks, nondestructive testing of dielectric aerospace materials, security applications, paleontology, detection of wood-boring insect damage, and others. Each application is illustrated with relevant data acquired in laboratory and/or field experiments.


2012 ◽  
Vol 41 (1) ◽  
Author(s):  
Andrej Gosar

High frequency ground penetrating radar (GPR) is usually applied for cavities detection in a shallow subsurface of karst areas to prevent geotechnical hazards. For specific projects, such as tunnel construction, it is important to detect also larger voids at medium depth range. However, dimensions of classical rigid low frequency antennas seriously limit their applicability in a rough terrain with dense vegetation commonly encountered in a karst. In this study recently developed 50 MHz antennas designed in a tube form were tested to detect cave gallery at the depth between 12 m and 60 m. The Divaca cave was selected because of a wide range of depths under the surface, possibility of unknown galleries in the vicinity and a rough terrain surface typical for Slovenian karst. Seven GPR profiles were measured across the main gallery of the cave and additional four profiles NE of the cave entrance where no galleries are known. Different acquisition and processing parameters were analysed together with the data resolution issues. The main gallery of the cave was clearly imaged in the part where the roof of the gallery is located at the depth from 10 m to 30 m. The width of the open space is mainly around 10 m. Applied system was not able to detect the gallery in the part where it is located deeper than 40 m, but several shallower cavities were discovered which were unknown before. The most important result is that the profiles acquired NE of the cave entrance revealed very clearly the existence of an unknown gallery which is located at the depth between 15 m and 22 m and represents the continuation of the Divaca cave. Access to this gallery is blocked by the sediment fill in the entrance shaft of the cave. The results of the study are important also for future infrastructure projects which will involve construction of tunnels through karstified limestone and for speleological investigations to direct the research efforts.Keywords: ground penetrating radar, cavity detection, spatial resolution, limestone, Divača cave.


Author(s):  
Sergey I. Ivashov ◽  
Lorenzo Capineri ◽  
Tim Bechtel ◽  
Masaharu Inagaki ◽  
Vladimir Razevig ◽  
...  

Holographic subsurface radar (HSR) is currently not in widespread usage. This is due to an historical perspective in the ground penetrating radar (GPR) community that the high attenuation of electromagnetic waves in most media of interest, and the inability to apply time-varying gain to the continuous wave (CW) HSR signal precludes sufficient effective penetration depth. While it is true that the fundamental physics of HSR, with its use of a CW signal, does not allow amplification of later (i.e. deeper) arrivals in lossy media (as is possible with impulse subsurface radar — ISR), HSR has distinct some distinctive advantages. The most important of these is the ability to do shallow subsurface imaging with a resolution that is not possible with ISR. In addition, the design of an HSR system is simpler than for ISR due to the relatively low-tech transmitting and receiving antennae. This paper provides a review of the main principles of HSR through an optical analogy and describes possible algorithms for radar hologram reconstruction. We also present a review of the history of development of systems and applications for HSR of the “RASCAN” type which is possibly the only holographic subsurface radar that is produced in lots. Among the subsurface imaging and remote sensing applications considered are humanitarian demining, construction inspection, surveys of historic architecture and artworks, nondestructive testing of dielectric aerospace materials, security applications, paleontology, detection of wood-boring insect damage, and others. Each application is illustrated with relevant data acquired in laboratory and/or field experiments.


2021 ◽  
Vol 14 (1) ◽  
pp. 58
Author(s):  
Kui Qu ◽  
Rongfu Zhang ◽  
Zhijun Fang

The conventional frequency modulated continuous wave (FMCW) radar accuracy range detection algorithm is based on the frequency estimation and additional phase evaluation which contains Fourier transform and frequency refining analysis in each chirp, so it has the disadvantages of being computationally expensive, and not being suitable for real-time motion measurement. In addition, if there are other objects near the target, the spectra of the clutter and the target will be adjacent and affect each other, making it more challenging to estimate the frequency of the target. In this paper, the analytical expression of the Fourier transform of the beat signal is presented and it can be seen that spectrum leakage makes the phase of Fourier transform no longer consistent with the real phase of signal. The change regularities of real and imaginary parts of Fourier transform are studied, and the corrected phase of ellipse approximation is given in the industrial, scientific, and medical (ISM) band. Accurate displacement can be obtained by accurate phase. The algorithm can filter the direct current (DC) offset which is mainly caused by stationary objects. The performance of the algorithm is evaluated by a radar system whose center frequency is 24.075 GHz and the bandwidth is 0.15 GHz; the measurement accuracy of displacement is 0.087 mm and the accuracy of distance is 0.043 m.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2469
Author(s):  
Seongwook Lee ◽  
Song-Yi Kwon ◽  
Bong-Jun Kim ◽  
Hae-Seung Lim ◽  
Jae-Eun Lee

In this paper, we introduce mapping results in an indoor environment based on our own developed dual-mode radar sensor. Our radar system uses a frequency-modulated continuous wave (FMCW) with a center frequency of 62 GHz and a multiple-input multiple-output antenna system. In addition, the FMCW radar sensor we designed is capable of dual-mode detection, which alternately transmits two waveforms using different bandwidths within one frame. The first waveform is for long-range detection, and the second waveform is for short-range detection. This radar system is mounted on a small robot that moves in indoor environments such as rooms or hallways, and the radar and the robot send and receive necessary information to each other. The radar estimates the distance, velocity, and angle information of targets around the radar-equipped robot. Then, the radar receives information about the robot’s motion from the robot, such as its speed and rotation angle. Finally, by combining the motion information and the detection results, the radar-equipped robot maps the indoor environment while finding its own position. Compared to the actual map data, the radar-based mapping is effectively achieved through the radar system we developed.


2020 ◽  
Vol 10 (18) ◽  
pp. 6558
Author(s):  
Youngseok Bae ◽  
Minwoo Yi ◽  
Jinwoo Shin ◽  
Sang-Gug Lee

In this paper, we propose an X-band photonic-based pulsed radar architecture with a high range resolution. The proposed architecture is operated as a pulsed radar by adding a Mach-Zehnder modulator (MZM) operating as an optical switch to a transmitter of a conventional photonic-based frequency-modulated continuous wave (FMCW) radar. In addition, a balanced photodetector (BPD) is employed to enhance the amplitude of the received signal and remove common-mode noise. A proposed photonic-based pulsed radar prototype is implemented to operate at a center frequency of 10 GHz, a bandwidth of 640 MHz, and a pulse repetition frequency (PRF) of 1 kHz considering the performances of an arbitrary waveform generator (AWG). The implemented prototype is verified through an indoor experiment. As a result, the positions of targets are detected in real-time with 1.6% error rates of a range accuracy and obtained the range resolution of 0.26 m.


2020 ◽  
Author(s):  
Nicolas Oudart ◽  
Valérie Ciarletti ◽  
Alice Le Gall ◽  
Marco Mastrogiuseppe ◽  
Yann Hervé ◽  
...  

<p><strong>Abstract</strong></p> <p>The WISDOM ground penetrating radar aboard the Rosalind Franklin rover of the ExoMars 2022 mission will provide radar images of the Martian shallow subsurface down to a few meters and with a vertical resolution of a few centimetres. Such a high resolution imaging of the subsurface will be key in understanding the geological context and guiding the sample acquisition by the rover’s drill. In order to enhance WISDOM resolution and meet the desired 3-cm value (the length of the samples that will be collected), a super-resolution technique known as the “Bandwidth Extrapolation” (BWE) is applied to WISDOM data. The BWE is validated on synthetic and laboratory data before being applied to observations acquired in a variety of potential Martian analog environments.</p> <p><strong>1.  Range resolution and the BWE technique</strong></p> <p>The ExoMars 2022 rover mission is the first mission in the history of the robotic exploration of Mars able to collect 3cm-long samples down to 2 m below the surface [1]. The data collected by the WISDOM radar will be processed to produce images (radargrams) of the subsurface, that will be interpreted in terms of geological structures and provide constraints on the subsurface composition. WISDOM radargrams will bring insights into the geological context and evolution of the landing site, and eventually, guide the drilling operations [2]. The WISDOM flight model has been calibrated [3] and an improved version of the data processing pipeline is being developed.</p> <p>WISDOM is a stepped-frequency radar operating at a central frequency of 1.75 GHz over a wide frequency bandwidth <em>B</em> (2.5 GHz). An Inverse Fourier Transform (IFT) is applied to the data to construct a response in time-domain. WISDOM range resolution


Author(s):  
Sergey I. Ivashov ◽  
Lorenzo Capineri ◽  
Tim Bechtel ◽  
Masaharu Inagaki ◽  
Vladimir Razevig ◽  
...  

Holographic subsurface radar (HSR) is not currently not in widespread usage. This is due to an historical perspective in the ground penetrating radar (GPR) community that the high attenuation of electromagnetic waves in most media of interest, and the inability to apply timevarying gain to the continuous wave (CW) HSR signal precludes sufficient effective penetration depth. While it is true that the fundamental physics of HSR, with its use of a CW signal, does not allow amplification of later (i.e. deeper) arrivals in lossy media (as is possible with impulse subsurface radar — ISR), HSR has distinct advantages. The most important of these is the ability to do shallow subsurface imaging with a resolution that is not possible with ISR. In addition, the design of an HSR system is simpler than for ISR due to the relatively low-tech transmitting and receiving antennae. This paper provides a review of the main principles of HSR through an optical analogy and describes possible algorithms for radar hologram reconstruction. We also present a review of the history of development of systems and applications for HSR of the “RASCAN” type which is possibly the only commercially available holographic subsurface radars. Among the subsurface imaging and remote sensing applications considered are humanitarian demining, construction inspection, nondestructive testing of dielectric aerospace materials, surveys of historic architecture and artworks, paleontology, and security screening. Each application is illustrated with relevant data acquired in laboratory and/or field experiments.


2013 ◽  
Vol 5 (3) ◽  
pp. 309-317 ◽  
Author(s):  
Christian Bredendiek ◽  
Nils Pohl ◽  
Timo Jaeschke ◽  
Sven Thomas ◽  
Klaus Aufinger ◽  
...  

In this paper a monostatic frequency-modulated continuous-wave (FMCW) radar system around a center frequency of 24 GHz with a wide tuning range of 8 GHz (≈33%) is presented. It is based on a fully integrated single-channel SiGe transceiver chip. The chip architecture consists of a fundamental VCO, a receive mixer, a divider chain, and coupling/matching networks. All circuits, except for the divider, are designed with the extensive use of on-chip monolithic integrated spiral inductors. The chip is fabricated in a SiGe bipolar production technology which offers an fT of 170 GHz and fmax of 250 GHz. The phase noise at 1 MHz offset is better than −100 dBc/Hz over the full-tuning range of 8 GHz and a phase noise of better than −111 dBc/Hz is achieved at 27 GHz. The peak output power of the chip is −1 dBm while the receive mixer offers a 1 dBm input referred compression point to keep it from being saturated. The chip has a power consumption of 245 mW and uses an area of 1.51 mm2. The FMCW radar system achieves a power consumption below 1.6 W. Owing to the high stability of the sensor, high accuracy mesaurements with a range error <±250 µm were achieved. The standard deviation between repeated measurements of the same target is 0.6 µm and the spatial resolution is 28 mm.


Sign in / Sign up

Export Citation Format

Share Document