scholarly journals Characterization of Inkjet-Printed Digital Microfluidics Devices

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3064
Author(s):  
Shiyu Chen ◽  
Zhidong He ◽  
Suhwan Choi ◽  
Igor V. Novosselov

Digital microfluidics (DMF) devices enable precise manipulation of small liquid volumes in point-of-care testing. A printed circuit board (PCB) substrate is commonly utilized to build DMF devices. However, inkjet printing can be used to fabricate DMF circuits, providing a less expensive alternative to PCB-based DMF designs while enabling more rapid design iteration cycles. We demonstrate the cleanroom-free fabrication process of a low-cost inkjet-printed DMF circuit. We compare Kapton and polymethyl methacrylate (PMMA) as dielectric coatings by measuring the minimal droplet actuation voltage for a range of actuation frequencies. A minimum actuation voltage of 5.6 V was required for droplet movement with the PMMA layer thickness of 0.2 μm and a hydrophobic layer of 0.17 μm. Significant issues with PMMA dielectric breakdown were observed at actuation voltages above 10 V. In comparison, devices that utilized Kapton were found to be more robust, even at an actuation voltage up to 100 V.

Author(s):  
Shiyu Chen ◽  
Zhidong He ◽  
Suhwan Choi ◽  
Igor Novosselov

Digital microfluidics (DMF) devices enable precise manipulation of small liquid volumes in point-of-care testing. Printed circuit board (PCB) substrate is commonly utilized to build DMF devices. However, inkjet printing can be used to fabricate DMF circuits, providing a less expensive alternative to PCB-based DMF designs while enabling more rapid design iteration cycles. We demonstrate the fabrication process of the inkjet-printed DMF circuit. We compare Kapton and polymethyl methacrylate (PMMA) as dielectric coatings by measuring the minimal droplet actuation voltage for a range of actuation frequencies. The minimum actuation voltage of 5.6 V was required for droplet movement with the PMMA layer thickness of 0.2 μm and a hydrophobic layer of 0.17 μm. Significant issues with PMMA dielectric breakdown were observed at actuation voltages above 10 V. In comparison, devices that utilized Kapton were found to be more robust even at the actuation voltage up to 100 V.


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5433 ◽  
Author(s):  
Mohammad Khodadadi ◽  
Long Chang ◽  
João R. C. Trabuco ◽  
Binh V. Vu ◽  
Katerina Kourentzi ◽  
...  

This work presents a proof-of-concept demonstration of a novel inductive transducer, the femtoMag, that can be integrated with a lateral-flow assay (LFA) to provide detection and quantification of molecular biomarkers. The femtoMag transducer is manufactured using a low-cost printed circuit board (PCB) technology and can be controlled by relatively inexpensive electronics. It allows rapid high-precision quantification of the number (or amount) of superparamagnetic nanoparticle reporters along the length of an LFA test strip. It has a detection limit of 10−10 emu, which is equivalent to detecting 4 ng of superparamagnetic iron oxide (Fe3O4) nanoparticles. The femtoMag was used to quantify the hCG pregnancy hormone by quantifying the number of 200 nm magnetic reporters (superparamagnetic Fe3O4 nanoparticles embedded into a polymer matrix) immuno-captured within the test line of the LFA strip. A sensitivity of 100 pg/mL has been demonstrated. Upon further design and control electronics improvements, the sensitivity is projected to be better than 10 pg/mL. Analysis suggests that an average of 109 hCG molecules are needed to specifically bind 107 nanoparticles in the test line. The ratio of the number of hCG molecules in the sample to the number of reporters in the test line increases monotonically from 20 to 500 as the hCG concentration increases from 0.1 ng/mL to 10 ng/mL. The low-cost easy-to-use femtoMag platform offers high-sensitivity/high-precision target analyte quantification and promises to bring state-of-the-art medical diagnostic tests to the point of care.


2011 ◽  
Vol 87 ◽  
pp. 140-145 ◽  
Author(s):  
Chadchawarn Phongsomboon ◽  
Kreeta Sukhthang ◽  
Wishsanuruk Wechsatol ◽  
Adisorn Tuantranont ◽  
Tanom Lomas

In this work, an electro-wetting on dielectric device (EWOD) with array style electrodes was fabricated from low price and common electronic materials. With its low cost and uncomplicated fabrication process, it is useful and feasible in teaching and educating young engineers on such droplet movement technique. The array electrodes were made from a common printed circuit board and copper tapes. The applied fabrication technique is mentioned in this paper. The water droplet movement in corresponding to the applied frequencies and voltage is reported.


Lab on a Chip ◽  
2022 ◽  
Author(s):  
Donghao Li ◽  
Xinyu Liu ◽  
Yujuan Chai ◽  
Jieying Shan ◽  
Yihan Xie ◽  
...  

The monitoring of coagulation function has great implications in many clinical settings. However, existing coagulation assays are simplex, sample-consuming, and slow in turnaround, making them less suitable for point-of-care testing....


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1387
Author(s):  
Maria Georgoutsou-Spyridonos ◽  
Myrto Filippidou ◽  
Georgia D. Kaprou ◽  
Dimitrios C. Mastellos ◽  
Stavros Chatzandroulis ◽  
...  

Printed circuit board (PCB) technology has been recently proposed as a convenient platform for seamlessly integrating electronics and microfluidics in the same substrate, thus facilitating the introduction of integrated and low-cost microfluidic devices to the market, thanks to the inherent upscaling potential of the PCB industry. Herein, a microfluidic chip, encompassing on PCB both a meandering microchannel and microheaters to accommodate recombinase polymerase amplification (RPA), is designed and commercially fabricated for the first time on PCB. The developed microchip is validated for RPA-based amplification of two E. coli target genes compared to a conventional thermocycler. The RPA performance of the PCB microchip was found to be well-comparable to that of a thermocycler yet with a remarkably lower power consumption (0.6 W). This microchip is intended for seamless integration with biosensors in the same PCB substrate for the development of a point-of-care (POC) molecular diagnostics platform.


Author(s):  
P. Singh ◽  
G.T. Galyon ◽  
J. Obrzut ◽  
W.A. Alpaugh

Abstract A time delayed dielectric breakdown in printed circuit boards, operating at temperatures below the epoxy resin insulation thermo-electrical limits, is reported. The safe temperature-voltage operating regime was estimated and related to the glass-rubber transition (To) of printed circuit board dielectric. The TG was measured using DSC and compared with that determined from electrical conductivity of the laminate in the glassy and rubbery state. A failure model was developed and fitted to the experimental data matching a localized thermal degradation of the dielectric and time dependency. The model is based on localized heating of an insulation resistance defect that under certain voltage bias can exceed the TG, thus, initiating thermal degradation of the resin. The model agrees well with the experimental data and indicates that the failure rate and truncation time beyond which the probability of failure becomes insignificant, decreases with increasing glass-rubber transition temperature.


Author(s):  
Keyur Mahant ◽  
Hiren Mewada ◽  
Amit Patel ◽  
Alpesh Vala ◽  
Jitendra Chaudhari

Aim: In this article, wideband substrate integrated waveguide (SIW) and rectangular waveguide (RWG) transition operating in Ka-band is proposed Objective: In this article, wideband substrate integrated waveguide (SIW) and rectangular waveguide (RWG) transition operating in Ka-band is proposed. Method: Coupling patch etched on the SIW cavity to couple the electromagnetic energy from SIW to RWG. Moreover, metasurface is introduced into the radiating patch to enhance bandwidth. To verify the functionality of the proposed structure back to back transition is designed and fabricated on a single layer substrate using standard printed circuit board (PCB) fabrication technology. Results: Measured results matches with the simulation results, measured insertion loss is less than 1.2 dB and return loss is better than 3 dB for the frequency range of 28.8 to 36.3 GHz. By fabricating transition with 35 SRRs bandwidth of the proposed transition can be improved. Conclusion: The proposed transition has advantages like compact in size, easy to fabricate, low cost and wide bandwidth. Proposed structure is a good candidate for millimeter wave circuits and systems.


2021 ◽  
Vol 11 (15) ◽  
pp. 6885
Author(s):  
Marcos D. Fernandez ◽  
José A. Ballesteros ◽  
Angel Belenguer

Empty substrate integrated coaxial line (ESICL) technology preserves the many advantages of the substrate integrated technology waveguides, such as low cost, low profile, or integration in a printed circuit board (PCB); in addition, ESICL is non-dispersive and has low radiation. To date, only two transitions have been proposed in the literature that connect the ESICL to classical planar lines such as grounded coplanar and microstrip. In both transitions, the feeding planar lines and the ESICL are built in the same substrate layer and they are based on transformed structures in the planar line, which must be in the central layer of the ESICL. These transitions also combine a lot of metallized and non-metallized parts, which increases the complexity of the manufacturing process. In this work, a new through-wire microstrip-to-ESICL transition is proposed. The feeding lines and the ESICL are implemented in different layers, so that the height of the ESICL can be independently chosen. In addition, it is a highly compact transition that does not require a transformer and can be freely rotated in its plane. This simplicity provides a high degree of versatility in the design phase, where there are only four variables that control the performance of the transition.


Sign in / Sign up

Export Citation Format

Share Document