scholarly journals Early Detection of Exposure to Toxic Chemicals Using Continuously Recorded Multi-Sensor Physiology

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3616
Author(s):  
Jan Ubbo van Baardewijk ◽  
Sarthak Agarwal ◽  
Alex S. Cornelissen ◽  
Marloes J. A. Joosen ◽  
Jiska Kentrop ◽  
...  

Early detection of exposure to a toxic chemical, e.g., in a military context, can be life-saving. We propose to use machine learning techniques and multiple continuously measured physiological signals to detect exposure, and to identify the chemical agent. Such detection and identification could be used to alert individuals to take appropriate medical counter measures in time. As a first step, we evaluated whether exposure to an opioid (fentanyl) or a nerve agent (VX) could be detected in freely moving guinea pigs using features from respiration, electrocardiography (ECG) and electroencephalography (EEG), where machine learning models were trained and tested on different sets (across subject classification). Results showed this to be possible with close to perfect accuracy, where respiratory features were most relevant. Exposure detection accuracy rose steeply to over 95% correct during the first five minutes after exposure. Additional models were trained to correctly classify an exposed state as being induced either by fentanyl or VX. This was possible with an accuracy of almost 95%, where EEG features proved to be most relevant. Exposure detection models that were trained on subsets of animals generalized to subsets of animals that were exposed to other dosages of different chemicals. While future work is required to validate the principle in other species and to assess the robustness of the approach under different, realistic circumstances, our results indicate that utilizing different continuously measured physiological signals for early detection and identification of toxic agents is promising.

2020 ◽  
Author(s):  
Francisco Diego Rabelo-da-Ponte ◽  
Jacson Gabriel Feiten ◽  
Benson Mwangi ◽  
Fernando C. Barros ◽  
Fernando C. Wehrmeister ◽  
...  

Author(s):  
Mohsen Kamyab ◽  
Stephen Remias ◽  
Erfan Najmi ◽  
Kerrick Hood ◽  
Mustafa Al-Akshar ◽  
...  

According to the Federal Highway Administration (FHWA), US work zones on freeways account for nearly 24% of nonrecurring freeway delays and 10% of overall congestion. Historically, there have been limited scalable datasets to investigate the specific causes of congestion due to work zones or to improve work zone planning processes to characterize the impact of work zone congestion. In recent years, third-party data vendors have provided scalable speed data from Global Positioning System (GPS) devices and cell phones which can be used to characterize mobility on all roadways. Each work zone has unique characteristics and varying mobility impacts which are predicted during the planning and design phases, but can realistically be quite different from what is ultimately experienced by the traveling public. This paper uses these datasets to introduce a scalable Work Zone Mobility Audit (WZMA) template. Additionally, the paper uses metrics developed for individual work zones to characterize the impact of more than 250 work zones varying in length and duration from Southeast Michigan. The authors make recommendations to work zone engineers on useful data to collect for improving the WZMA. As more systematic work zone data are collected, improved analytical assessment techniques, such as machine learning processes, can be used to identify the factors that will predict future work zone impacts. The paper concludes by demonstrating two machine learning algorithms, Random Forest and XGBoost, which show historical speed variation is a critical component when predicting the mobility impact of work zones.


2021 ◽  
Vol 8 ◽  
Author(s):  
Daniele Roberto Giacobbe ◽  
Alessio Signori ◽  
Filippo Del Puente ◽  
Sara Mora ◽  
Luca Carmisciano ◽  
...  

Sepsis is a major cause of death worldwide. Over the past years, prediction of clinically relevant events through machine learning models has gained particular attention. In the present perspective, we provide a brief, clinician-oriented vision on the following relevant aspects concerning the use of machine learning predictive models for the early detection of sepsis in the daily practice: (i) the controversy of sepsis definition and its influence on the development of prediction models; (ii) the choice and availability of input features; (iii) the measure of the model performance, the output, and their usefulness in the clinical practice. The increasing involvement of artificial intelligence and machine learning in health care cannot be disregarded, despite important pitfalls that should be always carefully taken into consideration. In the long run, a rigorous multidisciplinary approach to enrich our understanding in the application of machine learning techniques for the early recognition of sepsis may show potential to augment medical decision-making when facing this heterogeneous and complex syndrome.


Author(s):  
Mehmet Akif Cifci

The complication of people with diabetes causes an illness known as Diabetic Retinopathy (DR). It is very widespread among middle-aged and older people. As diabetes progresses, patients' vision may deteriorate and cause DR. People to lose their vision because of this illness. To cope with DR, early detection is needed. Patients will have to be checked by doctors regularly, which is a waste of time and energy. DR can be divided into two groups: non-proliferative (NPDR) while the other is proliferative (PDR). In this study, machine learning (ML) techniques are used to diagnose DR early. These are PNN, SVM, Bayesian Classification, and K-Means Clustering. These techniques will be evaluated and compared with each other to choose the best methodology. A total of 300 fundus photographs are processed for training and testing. The features are extracted from these raw images using image processing techniques. After an experiment, it is concluded that PNN has an accuracy of about 89%, Bayes Classifications 94%, SVM 97%, and K-Means Clustering 87%. The preliminary results prove that SVM is the best technique for early detection of DR.


Author(s):  
Annabella Astorino ◽  
Rosa Berti ◽  
Alessandro Astorino ◽  
Vincent Bitonti ◽  
Manuel De Marco ◽  
...  

Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 326 ◽  
Author(s):  
Zhixian Yang ◽  
Buhong Wang

A DDoS (Distributed Denial of Service) attack makes use of a botnet to launch attacks and cause node congestion of wireless sensor networks, which is a common and serious threat. Due to the various kinds of features required in a Peer-to-Peer (P2P) botnet for DDoS attack detection via current machine learning methods and the failure to effectively detect encrypted botnets, this paper extracts the data packet size and the symmetric intervals in flow according to the concept of graphic symmetry. Combined with flow information entropy and session features, the frequency domain features can be sorted so as to obtain features with better correlations, which solves the problem of multiple types of features required for detection. Information entropy corresponding to the flow size can distinguish an encrypted botnet. This method is implemented through machine learning techniques. Experimental results show that the proposed method can detect the P2P botnet for DDoS attack and the detection accuracy is higher than that of traditional feature detection.


Sign in / Sign up

Export Citation Format

Share Document