scholarly journals Tensor-Based ECG Anomaly Detection toward Cardiac Monitoring in the Internet of Health Things

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4173
Author(s):  
Houliang Zhou ◽  
Chen Kan

Advanced heart monitors, especially those enabled by the Internet of Health Things (IoHT), provide a great opportunity for continuous collection of the electrocardiogram (ECG), which contains rich information about underlying cardiac conditions. Realizing the full potential of IoHT-enabled cardiac monitoring hinges, to a great extent, on the detection of disease-induced anomalies from collected ECGs. However, challenges exist in the current literature for IoHT-based cardiac monitoring: (1) Most existing methods are based on supervised learning, which requires both normal and abnormal samples for training. This is impractical as it is generally unknown when and what kind of anomalies will occur during cardiac monitoring. (2) Furthermore, it is difficult to leverage advanced machine learning approaches for information processing of 1D ECG signals, as most of them are designed for 2D images and higher-dimensional data. To address these challenges, a new sensor-based unsupervised framework is developed for IoHT-based cardiac monitoring. First, a high-dimensional tensor is generated from the multi-channel ECG signals through the Gramian Angular Difference Field (GADF). Then, multi-linear principal component analysis (MPCA) is employed to unfold the ECG tensor and delineate the disease-altered patterns. Obtained principal components are used as features for anomaly detection using machine learning models (e.g., deep support vector data description (deep SVDD)) as well as statistical control charts (e.g., Hotelling T2 chart). The developed framework is evaluated and validated using real-world ECG datasets. Comparing to the state-of-the-art approaches, the developed framework with deep SVDD achieves superior performances in detecting abnormal ECG patterns induced by various types of cardiac disease, e.g., an F-score of 0.9771 is achieved for detecting atrial fibrillation, 0.9986 for detecting right bundle branch block, and 0.9550 for detecting ST-depression. Additionally, the developed framework with the T2 control chart facilitates personalized cycle-to-cycle monitoring with timely detected abnormal ECG patterns. The developed framework has a great potential to be implemented in IoHT-enabled cardiac monitoring and smart management of cardiac health.

Nowadays, the internet and network service user’s counts are increasing and the data generation speed also very high. Then again, we see greater security dangers on the internet, enterprise network, websites and the network. Anomaly has been known as one of the effective cyber threats over the internet which increasing exponentially and thus overcomes the commonly used approaches for anomaly detection and classification. Anomaly detection is used in big data analytics to recognize the unexpected behaviour. The most commonly used characteristics in network environment are size and dimensionality, which are big datasets and also impose problems in recognizing useful patterns, For example, to identify the network traffic anomalies from the large datasets. Due to the enormous increase of computer network based facilities it is a challenge to perform fast and efficient anomaly detection. The anomaly recognition in big data sets is more useful to discover fraud and abnormal action. Here, we mainly focus on the problems regarding anomaly detection, so we introduce a novel machine learning based anomaly detection technique. Machine learning approach is used to enhance the anomaly detection speed which is very much useful to detect the anomaly from the large datasets. We evaluate the proposed framework by performing experiments with larger data sets and compare to several existing techniques such as fuzzy, SVM (Support Vector Machine) and PSO (Particle swarm optimization). It has shown 98% percentage of accuracy and the false rate of 0.002 % on proposed classifier. The experimental results illuminate that better performance than existing anomaly detection techniques in big data environment.


2021 ◽  
Author(s):  
JianXi Yang ◽  
Fei Yang ◽  
Likai Zhang ◽  
Ren Li ◽  
Shixin Jiang ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Randa Aljably ◽  
Yuan Tian ◽  
Mznah Al-Rodhaan

Nowadays, user’s privacy is a critical matter in multimedia social networks. However, traditional machine learning anomaly detection techniques that rely on user’s log files and behavioral patterns are not sufficient to preserve it. Hence, the social network security should have multiple security measures to take into account additional information to protect user’s data. More precisely, access control models could complement machine learning algorithms in the process of privacy preservation. The models could use further information derived from the user’s profiles to detect anomalous users. In this paper, we implement a privacy preservation algorithm that incorporates supervised and unsupervised machine learning anomaly detection techniques with access control models. Due to the rich and fine-grained policies, our control model continuously updates the list of attributes used to classify users. It has been successfully tested on real datasets, with over 95% accuracy using Bayesian classifier, and 95.53% on receiver operating characteristic curve using deep neural networks and long short-term memory recurrent neural network classifiers. Experimental results show that this approach outperforms other detection techniques such as support vector machine, isolation forest, principal component analysis, and Kolmogorov–Smirnov test.


Transport ◽  
2020 ◽  
Vol 35 (5) ◽  
pp. 462-473
Author(s):  
Aleksandar Vorkapić ◽  
Radoslav Radonja ◽  
Karlo Babić ◽  
Sanda Martinčić-Ipšić

The aim of this article is to enhance performance monitoring of a two-stroke electronically controlled ship propulsion engine on the operating envelope. This is achieved by setting up a machine learning model capable of monitoring influential operating parameters and predicting the fuel consumption. Model is tested with different machine learning algorithms, namely linear regression, multilayer perceptron, Support Vector Machines (SVM) and Random Forests (RF). Upon verification of modelling framework and analysing the results in order to improve the prediction accuracy, the best algorithm is selected based on standard evaluation metrics, i.e. Root Mean Square Error (RMSE) and Relative Absolute Error (RAE). Experimental results show that, by taking an adequate combination and processing of relevant sensory data, SVM exhibit the lowest RMSE 7.1032 and RAE 0.5313%. RF achieve the lowest RMSE 22.6137 and RAE 3.8545% in a setting when minimal number of input variables is considered, i.e. cylinder indicated pressures and propulsion engine revolutions. Further, article deals with the detection of anomalies of operating parameters, which enables the evaluation of the propulsion engine condition and the early identification of failures and deterioration. Such a time-dependent, self-adopting anomaly detection model can be used for comparison with the initial condition recorded during the test and sea run or after survey and docking. Finally, we propose a unified model structure, incorporating fuel consumption prediction and anomaly detection model with on-board decision-making process regarding navigation and maintenance.


Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2857
Author(s):  
Laura Vigoya ◽  
Diego Fernandez ◽  
Victor Carneiro ◽  
Francisco Nóvoa

With advancements in engineering and science, the application of smart systems is increasing, generating a faster growth of the IoT network traffic. The limitations due to IoT restricted power and computing devices also raise concerns about security vulnerabilities. Machine learning-based techniques have recently gained credibility in a successful application for the detection of network anomalies, including IoT networks. However, machine learning techniques cannot work without representative data. Given the scarcity of IoT datasets, the DAD emerged as an instrument for knowing the behavior of dedicated IoT-MQTT networks. This paper aims to validate the DAD dataset by applying Logistic Regression, Naive Bayes, Random Forest, AdaBoost, and Support Vector Machine to detect traffic anomalies in IoT. To obtain the best results, techniques for handling unbalanced data, feature selection, and grid search for hyperparameter optimization have been used. The experimental results show that the proposed dataset can achieve a high detection rate in all the experiments, providing the best mean accuracy of 0.99 for the tree-based models, with a low false-positive rate, ensuring effective anomaly detection.


2019 ◽  
Vol 8 (07) ◽  
pp. 24680-24782
Author(s):  
Manisha Bagri ◽  
Neha Aggarwal

By 2020 around 25-50 billion devices are likely to be connected to the internet. Due to this new development, it gives rise to something called Internet of Things (IoT). The interconnected devices can generate and share data over a network. Machine Learning plays a key role in IoT to handle the vast amount of data. It gives IoT and devices a brain to think, which is often called as intelligence. The data can be feed to machines for learning patterns, based on training the machines can identify to predict for the future. This paper gives a brief explanation of IoT. This paper gives a crisp explanation of machine learning algorithm and its types. However, Support Vector Machine (SVM) is explained in details along with its merits and demerits. An algorithm is also proposed for weather prediction using SVM for IoT.


2021 ◽  
Vol 11 (21) ◽  
pp. 10187
Author(s):  
Yonghyeok Ji ◽  
Seongyong Jeong ◽  
Yeongjin Cho ◽  
Howon Seo ◽  
Jaesung Bang ◽  
...  

Transmission mounted electric drive type hybrid electric vehicles (HEVs) engage/disengage an engine clutch when EV↔HEV mode transitions occur. If this engine clutch is not adequately engaged or disengaged, driving power is not transmitted correctly. Therefore, it is required to verify whether engine clutch engagement/disengagement operates normally in the vehicle development process. This paper studied machine learning-based methods for detecting anomalies in the engine clutch engagement/disengagement process. We trained the various models based on multi-layer perceptron (MLP), long short-term memory (LSTM), convolutional neural network (CNN), and one-class support vector machine (one-class SVM) with the actual vehicle test data and compared their results. The test results showed the one-class SVM-based models have the highest anomaly detection performance. Additionally, we found that configuring the training architecture to determine normal/anomaly by data instance and conducting one-class classification is proper for detecting anomalies in the target data.


2021 ◽  
pp. 1-15
Author(s):  
Savaridassan Pankajashan ◽  
G. Maragatham ◽  
T. Kirthiga Devi

Anomaly-based detection is coupled with recognizing the uncommon, to catch the unusual activity, and to find the strange action behind that activity. Anomaly-based detection has a wide scope of critical applications, from bank application security to regular sciences to medical systems to marketing apps. Anomaly-based detection adopted by various Machine Learning techniques is really a type of system that consists of artificial intelligence. With the ever-expanding volume and new sorts of information, for example, sensor information from an incontestably enormous amount of IoT devices and from network flow data from cloud computing, it is implicitly understood without surprise that there is a developing enthusiasm for having the option to deal with more conclusions automatically by means of AI and ML applications. But with respect to anomaly detection, many applications of the scheme are simply the passion for detection. In this paper, Machine Learning (ML) techniques, namely the SVM, Isolation forest classifiers experimented and with reference to Deep Learning (DL) techniques, the proposed DA-LSTM (Deep Auto-Encoder LSTM) model are adopted for preprocessing of log data and anomaly-based detection to get better performance measures of detection. An enhanced LSTM (long-short-term memory) model, optimizing for the suitable parameter using a genetic algorithm (GA), is utilized to recognize better the anomaly from the log data that is filtered, adopting a Deep Auto-Encoder (DA). The Deep Neural network models are utilized to change over unstructured log information to training ready features, which are reasonable for log classification in detecting anomalies. These models are assessed, utilizing two benchmark datasets, the Openstack logs, and CIDDS-001 intrusion detection OpenStack server dataset. The outcomes acquired show that the DA-LSTM model performs better than other notable ML techniques. We further investigated the performance metrics of the ML and DL models through the well-known indicator measurements, specifically, the F-measure, Accuracy, Recall, and Precision. The exploratory conclusion shows that the Isolation Forest, and Support vector machine classifiers perform roughly 81%and 79%accuracy with respect to the performance metrics measurement on the CIDDS-001 OpenStack server dataset while the proposed DA-LSTM classifier performs around 99.1%of improved accuracy than the familiar ML algorithms. Further, the DA-LSTM outcomes on the OpenStack log data-sets show better anomaly detection compared with other notable machine learning models.


Author(s):  
Hesham M. Al-Ammal

Detection of anomalies in a given data set is a vital step in several applications in cybersecurity; including intrusion detection, fraud, and social network analysis. Many of these techniques detect anomalies by examining graph-based data. Analyzing graphs makes it possible to capture relationships, communities, as well as anomalies. The advantage of using graphs is that many real-life situations can be easily modeled by a graph that captures their structure and inter-dependencies. Although anomaly detection in graphs dates back to the 1990s, recent advances in research utilized machine learning methods for anomaly detection over graphs. This chapter will concentrate on static graphs (both labeled and unlabeled), and the chapter summarizes some of these recent studies in machine learning for anomaly detection in graphs. This includes methods such as support vector machines, neural networks, generative neural networks, and deep learning methods. The chapter will reflect the success and challenges of using these methods in the context of graph-based anomaly detection.


Sign in / Sign up

Export Citation Format

Share Document