scholarly journals Machine Learning-Based 5G-and-Beyond Channel Estimation for MIMO-OFDM Communication Systems

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4861
Author(s):  
Ha An Le ◽  
Trinh Van Van Chien ◽  
Tien Hoa Nguyen ◽  
Hyunseung Choo ◽  
Van Duc Nguyen

Channel estimation plays a critical role in the system performance of wireless networks. In addition, deep learning has demonstrated significant improvements in enhancing the communication reliability and reducing the computational complexity of 5G-and-beyond networks. Even though least squares (LS) estimation is popularly used to obtain channel estimates due to its low cost without any prior statistical information regarding the channel, this method has relatively high estimation error. This paper proposes a new channel estimation architecture with the assistance of deep learning in order to improve the channel estimation obtained by the LS approach. Our goal is achieved by utilizing a MIMO (multiple-input multiple-output) system with a multi-path channel profile for simulations in 5G-and-beyond networks under the level of mobility expressed by the Doppler effects. The system model is constructed for an arbitrary number of transceiver antennas, while the machine learning module is generalized in the sense that an arbitrary neural network architecture can be exploited. Numerical results demonstrate the superiority of the proposed deep learning-based channel estimation framework over the other traditional channel estimation methods popularly used in previous works. In addition, bidirectional long short-term memory offers the best channel estimation quality and the lowest bit error ratio among the considered artificial neural network architectures.

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2852
Author(s):  
Parvathaneni Naga Srinivasu ◽  
Jalluri Gnana SivaSai ◽  
Muhammad Fazal Ijaz ◽  
Akash Kumar Bhoi ◽  
Wonjoon Kim ◽  
...  

Deep learning models are efficient in learning the features that assist in understanding complex patterns precisely. This study proposed a computerized process of classifying skin disease through deep learning based MobileNet V2 and Long Short Term Memory (LSTM). The MobileNet V2 model proved to be efficient with a better accuracy that can work on lightweight computational devices. The proposed model is efficient in maintaining stateful information for precise predictions. A grey-level co-occurrence matrix is used for assessing the progress of diseased growth. The performance has been compared against other state-of-the-art models such as Fine-Tuned Neural Networks (FTNN), Convolutional Neural Network (CNN), Very Deep Convolutional Networks for Large-Scale Image Recognition developed by Visual Geometry Group (VGG), and convolutional neural network architecture that expanded with few changes. The HAM10000 dataset is used and the proposed method has outperformed other methods with more than 85% accuracy. Its robustness in recognizing the affected region much faster with almost 2× lesser computations than the conventional MobileNet model results in minimal computational efforts. Furthermore, a mobile application is designed for instant and proper action. It helps the patient and dermatologists identify the type of disease from the affected region’s image at the initial stage of the skin disease. These findings suggest that the proposed system can help general practitioners efficiently and effectively diagnose skin conditions, thereby reducing further complications and morbidity.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Daniel Griffith ◽  
Alex S Holehouse

The rise of high-throughput experiments has transformed how scientists approach biological questions. The ubiquity of large-scale assays that can test thousands of samples in a day has necessitated the development of new computational approaches to interpret this data. Among these tools, machine learning approaches are increasingly being utilized due to their ability to infer complex nonlinear patterns from high-dimensional data. Despite their effectiveness, machine learning (and in particular deep learning) approaches are not always accessible or easy to implement for those with limited computational expertise. Here we present PARROT, a general framework for training and applying deep learning-based predictors on large protein datasets. Using an internal recurrent neural network architecture, PARROT is capable of tackling both classification and regression tasks while only requiring raw protein sequences as input. We showcase the potential uses of PARROT on three diverse machine learning tasks: predicting phosphorylation sites, predicting transcriptional activation function of peptides generated by high-throughput reporter assays, and predicting the fibrillization propensity of amyloid beta with data generated by deep mutational scanning. Through these examples, we demonstrate that PARROT is easy to use, performs comparably to state-of-the-art computational tools, and is applicable for a wide array of biological problems.


2021 ◽  
Author(s):  
◽  
Martin Mundt

Deep learning with neural networks seems to have largely replaced traditional design of computer vision systems. Automated methods to learn a plethora of parameters are now used in favor of previously practiced selection of explicit mathematical operators for a specific task. The entailed promise is that practitioners no longer need to take care of every individual step, but rather focus on gathering big amounts of data for neural network training. As a consequence, both a shift in mindset towards a focus on big datasets, as well as a wave of conceivable applications based exclusively on deep learning can be observed. This PhD dissertation aims to uncover some of the only implicitly mentioned or overlooked deep learning aspects, highlight unmentioned assumptions, and finally introduce methods to address respective immediate weaknesses. In the author’s humble opinion, these prevalent shortcomings can be tied to the fact that the involved steps in the machine learning workflow are frequently decoupled. Success is predominantly measured based on accuracy measures designed for evaluation with static benchmark test sets. Individual machine learning workflow components are assessed in isolation with respect to available data, choice of neural network architecture, and a particular learning algorithm, rather than viewing the machine learning system as a whole in context of a particular application. Correspondingly, in this dissertation, three key challenges have been identified: 1. Choice and flexibility of a neural network architecture. 2. Identification and rejection of unseen unknown data to avoid false predictions. 3. Continual learning without forgetting of already learned information. These latter challenges have already been crucial topics in older literature, alas, seem to require a renaissance in modern deep learning literature. Initially, it may appear that they pose independent research questions, however, the thesis posits that the aspects are intertwined and require a joint perspective in machine learning based systems. In summary, the essential question is thus how to pick a suitable neural network architecture for a specific task, how to recognize which data inputs belong to this context, which ones originate from potential other tasks, and ultimately how to continuously include such identified novel data in neural network training over time without overwriting existing knowledge. Thus, the central emphasis of this dissertation is to build on top of existing deep learning strengths, yet also acknowledge mentioned weaknesses, in an effort to establish a deeper understanding of interdependencies and synergies towards the development of unified solution mechanisms. For this purpose, the main portion of the thesis is in cumulative form. The respective publications can be grouped according to the three challenges outlined above. Correspondingly, chapter 1 is focused on choice and extendability of neural network architectures, analyzed in context of popular image classification tasks. An algorithm to automatically determine neural network layer width is introduced and is first contrasted with static architectures found in the literature. The importance of neural architecture design is then further showcased on a real-world application of defect detection in concrete bridges. Chapter 2 is comprised of the complementary ensuing questions of how to identify unknown concepts and subsequently incorporate them into continual learning. A joint central mechanism to distinguish unseen concepts from what is known in classification tasks, while enabling consecutive training without forgetting or revisiting older classes, is proposed. Once more, the role of the chosen neural network architecture is quantitatively reassessed. Finally, chapter 3 culminates in an overarching view, where developed parts are connected. Here, an extensive survey further serves the purpose to embed the gained insights in the broader literature landscape and emphasizes the importance of a common frame of thought. The ultimately presented approach thus reflects the overall thesis’ contribution to advance neural network based machine learning towards a unified solution that ties together choice of neural architecture with the ability to learn continually and the capability to automatically separate known from unknown data.


2021 ◽  
Vol 7 ◽  
pp. e365
Author(s):  
Nikita Bhandari ◽  
Satyajeet Khare ◽  
Rahee Walambe ◽  
Ketan Kotecha

Gene promoters are the key DNA regulatory elements positioned around the transcription start sites and are responsible for regulating gene transcription process. Various alignment-based, signal-based and content-based approaches are reported for the prediction of promoters. However, since all promoter sequences do not show explicit features, the prediction performance of these techniques is poor. Therefore, many machine learning and deep learning models have been proposed for promoter prediction. In this work, we studied methods for vector encoding and promoter classification using genome sequences of three distinct higher eukaryotes viz. yeast (Saccharomyces cerevisiae), A. thaliana (plant) and human (Homo sapiens). We compared one-hot vector encoding method with frequency-based tokenization (FBT) for data pre-processing on 1-D Convolutional Neural Network (CNN) model. We found that FBT gives a shorter input dimension reducing the training time without affecting the sensitivity and specificity of classification. We employed the deep learning techniques, mainly CNN and recurrent neural network with Long Short Term Memory (LSTM) and random forest (RF) classifier for promoter classification at k-mer sizes of 2, 4 and 8. We found CNN to be superior in classification of promoters from non-promoter sequences (binary classification) as well as species-specific classification of promoter sequences (multiclass classification). In summary, the contribution of this work lies in the use of synthetic shuffled negative dataset and frequency-based tokenization for pre-processing. This study provides a comprehensive and generic framework for classification tasks in genomic applications and can be extended to various classification problems.


2020 ◽  
Vol 196 ◽  
pp. 02007
Author(s):  
Vladimir Mochalov ◽  
Anastasia Mochalova

In this paper, the previously obtained results on recognition of ionograms using deep learning are expanded to predict the parameters of the ionosphere. After the ionospheric parameters have been identified on the ionogram using deep learning in real time, we can predict the parameters for some time ahead on the basis of the new data obtained Examples of predicting the ionosphere parameters using an artificial recurrent neural network architecture long short-term memory are given. The place of the block for predicting the parameters of the ionosphere in the system for analyzing ionospheric data using deep learning methods is shown.


2021 ◽  
Vol 5 (4) ◽  
pp. 334-341
Author(s):  
D Venkata Ratnam ◽  
◽  
K Nageswara Rao ◽  

<abstract> <p>The advanced neural network methods solve significant signal estimation and channel characterization difficulties in the next-generation 5G wireless communication systems. The number of transmitted signal copies received through multiple paths at the receiver leads to delay spread, which intern causes interference in communication. These adverse effects of the interference can be mitigated with the orthogonal frequency division modulation (OFDM) technique. Furthermore, the proper signal detection methods optimal channel estimation enhances the performance of the multicarrier wireless communication system. In this paper, bi-directional long short-term memory (Bi-LSTM) based deep learning method is implemented to estimate the channel in different multipath scenarios. The impact of the pilots and cyclic prefix on the performance of Bi LSTM algorithm is analyzed. It is evident from the symbol-error rate (SER) results that the Bi-LSTM algorithm performs better than the state of art channel estimation methods known as the Minimum Mean Square and Error (MMSE) estimation method.</p> </abstract>


Author(s):  
Pejman Ghasemzadeh ◽  
Subharthi Banerjee ◽  
Michael Hempel ◽  
Hamid Sharif ◽  
Tarek Omar

Abstract Automatic Modulation Classification (AMC) is becoming an essential component in receiver designs for next-generation communication systems, such as Cognitive Radios (CR). AMC enables receivers to classify an intercepted signal’s modulation scheme without any prior information about the signal. This is becoming increasingly vital due to the combination of congested frequency bands and geographically disparate frequency licensing for the railroad industry across North America. Thus, a radio technology is needed that allows train systems to adapt automatically and intelligently to changing locations and corresponding RF environment fluctuations. Three AMC approaches have been proposed in the scientific literature. The performance of these approaches depends especially on the particular environment where the classifiers are employed. In this work, the authors present a performance evaluation of the Feature-based AMC approach, as this is the most promising approach for railroads in real-time AMC operations under various different wireless channel environments. This study is done as the first one for railroads application where it considers different environments models including Non-Gaussian Class A noise, Multipath fast fading, and their combination. The evaluation is conducted for signals using a series of QAM modulation schemes. The authors selected the signal’s Cumulant statistical features for the feature extraction stage in this study, coupled with three different machine learning classifiers: Support Vector Machine (SVM), Deep Neural Network (DNN) and Recurrent Neural Network (RNN) utilizing long-short term memory (LSTM), in order to maintain control over the classifiers’ accuracy and computational complexity, especially for the non-linear cases. Our results indicate that when the signal model noise shows higher non-linear behavior, the RNN classifier on average achieves higher classification accuracy than the other classifiers.


2021 ◽  
Vol 11 (17) ◽  
pp. 8129 ◽  
Author(s):  
Changchun Cai ◽  
Yuan Tao ◽  
Tianqi Zhu ◽  
Zhixiang Deng

Accurate load forecasting guarantees the stable and economic operation of power systems. With the increasing integration of distributed generations and electrical vehicles, the variability and randomness characteristics of individual loads and the distributed generation has increased the complexity of power loads in power systems. Hence, accurate and robust load forecasting results are becoming increasingly important in modern power systems. The paper presents a multi-layer stacked bidirectional long short-term memory (LSTM)-based short-term load forecasting framework; the method includes neural network architecture, model training, and bootstrapping. In the proposed method, reverse computing is combined with forward computing, and a feedback calculation mechanism is designed to solve the coupling of before and after time-series information of the power load. In order to improve the convergence of the algorithm, deep learning training is introduced to mine the correlation between historical loads, and the multi-layer stacked style of the network is established to manage the power load information. Finally, actual data are applied to test the proposed method, and a comparison of the results of the proposed method with different methods shows that the proposed method can extract dynamic features from the data as well as make accurate predictions, and the availability of the proposed method is verified with real operational data.


Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 333
Author(s):  
Majid Mobini ◽  
Georges Kaddoum ◽  
Marijan Herceg

This paper brings forward a Deep Learning (DL)-based Chaos Shift Keying (DLCSK) demodulation scheme to promote the capabilities of existing chaos-based wireless communication systems. In coherent Chaos Shift Keying (CSK) schemes, we need synchronization of chaotic sequences, which is still practically impossible in a disturbing environment. Moreover, the conventional Differential Chaos Shift Keying (DCSK) scheme has a drawback, that for each bit, half of the bit duration is spent sending non-information bearing reference samples. To deal with this drawback, a Long Short-Term Memory (LSTM)-based receiver is trained offline, using chaotic maps through a finite number of channel realizations, and then used for classifying online modulated signals. We presented that the proposed receiver can learn different chaotic maps and estimate channels implicitly, and then retrieves the transmitted messages without any need for chaos synchronization or reference signal transmissions. Simulation results for both the AWGN and Rayleigh fading channels show a remarkable BER performance improvement compared to the conventional DCSK scheme. The proposed DLCSK system will provide opportunities for a new class of receivers by leveraging the advantages of DL, such as effective serial and parallel connectivity. A Single Input Multiple Output (SIMO) architecture of the DLCSK receiver with excellent reliability is introduced to show its capabilities. The SIMO DLCSK benefits from a DL-based channel estimation approach, which makes this architecture simpler and more efficient for applications where channel estimation is problematic, such as massive MIMO, mmWave, and cloud-based communication systems.


2021 ◽  
Vol 10 (4) ◽  
pp. 2181-2191
Author(s):  
Devi Munandar ◽  
Andri Fachrur Rozie ◽  
Andria Arisal

Sentiment analysis of short texts is challenging because of its limited context of information. It becomes more challenging to be done on limited resource language like Bahasa Indonesia. However, with various deep learning techniques, it can give pretty good accuracy. This paper explores several deep learning methods, such as multilayer perceptron (MLP), convolutional neural network (CNN), long short-term memory (LSTM), and builds combinations of those three architectures. The combinations of those three architectures are intended to get the best of those architecture models. The MLP accommodates the use of the previous model to obtain classification output. The CNN layer extracts the word feature vector from text sequences. Subsequently, the LSTM repetitively selects or discards feature sequences based on their context. Those advantages are useful for different domain datasets. The experiments on sentiment analysis of short text in Bahasa Indonesia show that hybrid models can obtain better performance, and the same architecture can be directly used in another domain-specific dataset.


Sign in / Sign up

Export Citation Format

Share Document