scholarly journals A multi domains short message sentiment classification using hybrid neural network architecture

2021 ◽  
Vol 10 (4) ◽  
pp. 2181-2191
Author(s):  
Devi Munandar ◽  
Andri Fachrur Rozie ◽  
Andria Arisal

Sentiment analysis of short texts is challenging because of its limited context of information. It becomes more challenging to be done on limited resource language like Bahasa Indonesia. However, with various deep learning techniques, it can give pretty good accuracy. This paper explores several deep learning methods, such as multilayer perceptron (MLP), convolutional neural network (CNN), long short-term memory (LSTM), and builds combinations of those three architectures. The combinations of those three architectures are intended to get the best of those architecture models. The MLP accommodates the use of the previous model to obtain classification output. The CNN layer extracts the word feature vector from text sequences. Subsequently, the LSTM repetitively selects or discards feature sequences based on their context. Those advantages are useful for different domain datasets. The experiments on sentiment analysis of short text in Bahasa Indonesia show that hybrid models can obtain better performance, and the same architecture can be directly used in another domain-specific dataset.

2020 ◽  
Vol 13 (4) ◽  
pp. 627-640 ◽  
Author(s):  
Avinash Chandra Pandey ◽  
Dharmveer Singh Rajpoot

Background: Sentiment analysis is a contextual mining of text which determines viewpoint of users with respect to some sentimental topics commonly present at social networking websites. Twitter is one of the social sites where people express their opinion about any topic in the form of tweets. These tweets can be examined using various sentiment classification methods to find the opinion of users. Traditional sentiment analysis methods use manually extracted features for opinion classification. The manual feature extraction process is a complicated task since it requires predefined sentiment lexicons. On the other hand, deep learning methods automatically extract relevant features from data hence; they provide better performance and richer representation competency than the traditional methods. Objective: The main aim of this paper is to enhance the sentiment classification accuracy and to reduce the computational cost. Method: To achieve the objective, a hybrid deep learning model, based on convolution neural network and bi-directional long-short term memory neural network has been introduced. Results: The proposed sentiment classification method achieves the highest accuracy for the most of the datasets. Further, from the statistical analysis efficacy of the proposed method has been validated. Conclusion: Sentiment classification accuracy can be improved by creating veracious hybrid models. Moreover, performance can also be enhanced by tuning the hyper parameters of deep leaning models.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2852
Author(s):  
Parvathaneni Naga Srinivasu ◽  
Jalluri Gnana SivaSai ◽  
Muhammad Fazal Ijaz ◽  
Akash Kumar Bhoi ◽  
Wonjoon Kim ◽  
...  

Deep learning models are efficient in learning the features that assist in understanding complex patterns precisely. This study proposed a computerized process of classifying skin disease through deep learning based MobileNet V2 and Long Short Term Memory (LSTM). The MobileNet V2 model proved to be efficient with a better accuracy that can work on lightweight computational devices. The proposed model is efficient in maintaining stateful information for precise predictions. A grey-level co-occurrence matrix is used for assessing the progress of diseased growth. The performance has been compared against other state-of-the-art models such as Fine-Tuned Neural Networks (FTNN), Convolutional Neural Network (CNN), Very Deep Convolutional Networks for Large-Scale Image Recognition developed by Visual Geometry Group (VGG), and convolutional neural network architecture that expanded with few changes. The HAM10000 dataset is used and the proposed method has outperformed other methods with more than 85% accuracy. Its robustness in recognizing the affected region much faster with almost 2× lesser computations than the conventional MobileNet model results in minimal computational efforts. Furthermore, a mobile application is designed for instant and proper action. It helps the patient and dermatologists identify the type of disease from the affected region’s image at the initial stage of the skin disease. These findings suggest that the proposed system can help general practitioners efficiently and effectively diagnose skin conditions, thereby reducing further complications and morbidity.


2020 ◽  
Vol 196 ◽  
pp. 02007
Author(s):  
Vladimir Mochalov ◽  
Anastasia Mochalova

In this paper, the previously obtained results on recognition of ionograms using deep learning are expanded to predict the parameters of the ionosphere. After the ionospheric parameters have been identified on the ionogram using deep learning in real time, we can predict the parameters for some time ahead on the basis of the new data obtained Examples of predicting the ionosphere parameters using an artificial recurrent neural network architecture long short-term memory are given. The place of the block for predicting the parameters of the ionosphere in the system for analyzing ionospheric data using deep learning methods is shown.


2021 ◽  
Vol 11 (17) ◽  
pp. 8129 ◽  
Author(s):  
Changchun Cai ◽  
Yuan Tao ◽  
Tianqi Zhu ◽  
Zhixiang Deng

Accurate load forecasting guarantees the stable and economic operation of power systems. With the increasing integration of distributed generations and electrical vehicles, the variability and randomness characteristics of individual loads and the distributed generation has increased the complexity of power loads in power systems. Hence, accurate and robust load forecasting results are becoming increasingly important in modern power systems. The paper presents a multi-layer stacked bidirectional long short-term memory (LSTM)-based short-term load forecasting framework; the method includes neural network architecture, model training, and bootstrapping. In the proposed method, reverse computing is combined with forward computing, and a feedback calculation mechanism is designed to solve the coupling of before and after time-series information of the power load. In order to improve the convergence of the algorithm, deep learning training is introduced to mine the correlation between historical loads, and the multi-layer stacked style of the network is established to manage the power load information. Finally, actual data are applied to test the proposed method, and a comparison of the results of the proposed method with different methods shows that the proposed method can extract dynamic features from the data as well as make accurate predictions, and the availability of the proposed method is verified with real operational data.


2021 ◽  
Vol 7 (2) ◽  
pp. 113-121
Author(s):  
Firman Pradana Rachman

Setiap orang mempunyai pendapat atau opini terhadap suatu produk, tokoh masyarakat, atau pun sebuah kebijakan pemerintah yang tersebar di media sosial. Pengolahan data opini itu di sebut dengan sentiment analysis. Dalam pengolahan data opini yang besar tersebut tidak hanya cukup menggunakan machine learning, namun bisa juga menggunakan deep learning yang di kombinasikan dengan teknik NLP (Natural Languange Processing). Penelitian ini membandingkan beberapa model deep learning seperti CNN (Convolutional Neural Network), RNN (Recurrent Neural Networks), LSTM (Long Short-Term Memory) dan beberapa variannya untuk mengolah data sentiment analysis dari review produk amazon dan yelp.


2021 ◽  
Author(s):  
Usha Devi G ◽  
Priyan M K ◽  
Gokulnath Chandra Babu ◽  
Gayathri Karthick

Abstract Twitter sentiment analysis is an automated process of analyzing the text data which determining the opinion or feeling of public tweets from the various fields. For example, in marketing field, political field huge number of tweets is posting with hash tags every moment via internet from one user to another user. This sentiment analysis is a challenging task for the researchers mainly to correct interpretation of context in which certain tweet words are difficult to evaluate what truly is negative and positive statement from the huge corpus of tweet data. This problem violates the integrity of the system and the user reliability can be significantly reduced. In this paper, we identify the each tweet word and we are assigning a meaning into it. The feature work is combined with tweet words, word2vec, stop words and integrated into the deep learning techniques of Convolution neural network model and Long short Term Memory, these algorithms can identify the pattern of stop word counts with its own strategy. Those two models are well trained and applied for IMDB dataset which contains 50,000 movie reviews. With huge amount of twitter data is processed for predicting the sentimental tweets for classification. With the proposed methodology, the samples are experimentally collected from the real-time environment can be discriminated well and the efficacy of the system is improved. The result of Deep Learning algorithms aims to rate the review tweets and also able to identify movie review with testing accuracy as 87.74% and 88.02%.


Author(s):  
Vedika Gupta ◽  
Nikita Jain ◽  
Shubham Shubham ◽  
Agam Madan ◽  
Ankit Chaudhary ◽  
...  

Linguistic resources for commonly used languages such as English and Mandarin Chinese are available in abundance, hence the existing research in these languages. However, there are languages for which linguistic resources are scarcely available. One of these languages is the Hindi language. Hindi, being the fourth-most popular language, still lacks in richly populated linguistic resources, owing to the challenges involved in dealing with the Hindi language. This article first explores the machine learning-based approaches—Naïve Bayes, Support Vector Machine, Decision Tree, and Logistic Regression—to analyze the sentiment contained in Hindi language text derived from Twitter. Further, the article presents lexicon-based approaches (Hindi Senti-WordNet, NRC Emotion Lexicon) for sentiment analysis in Hindi while also proposing a Domain-specific Sentiment Dictionary. Finally, an integrated convolutional neural network (CNN)—Recurrent Neural Network and Long Short-term Memory—is proposed to analyze sentiment from Hindi language tweets, a total of 23,767 tweets classified into positive, negative, and neutral. The proposed CNN approach gives an accuracy of 85%.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1880
Author(s):  
Samuel Terra Vieira ◽  
Renata Lopes Rosa ◽  
Demóstenes Zegarra Rodríguez ◽  
Miguel Arjona Ramírez ◽  
Muhammad Saadi ◽  
...  

A quality monitoring system for telecommunication services is relevant for network operators because it can help to improve users’ quality-of-experience (QoE). In this context, this article proposes a quality monitoring system, named Q-Meter, whose main objective is to improve subscriber complaint detection about telecommunication services using online-social-networks (OSNs). The complaint is detected by sentiment analysis performed by a deep learning algorithm, and the subscriber’s geographical location is extracted to evaluate the signal strength. The regions in which users posted a complaint in OSN are analyzed using a freeware application, which uses the radio base station (RBS) information provided by an open database. Experimental results demonstrated that sentiment analysis based on a convolutional neural network (CNN) and a bidirectional long short-term memory (BLSTM)-recurrent neural network (RNN) with the soft-root-sign (SRS) activation function presented a precision of 97% for weak signal topic classification. Additionally, the results showed that 78.3% of the total number of complaints are related to weak coverage, and 92% of these regions were proved that have coverage problems considering a specific cellular operator. Moreover, a Q-Meter is low cost and easy to integrate into current and next-generation cellular networks, and it will be useful in sensing and monitoring tasks.


2021 ◽  
Vol 40 ◽  
pp. 03032
Author(s):  
Shweta Dhabekar ◽  
M. D. Patil

With the increase in E-Commerce businesses in the last decade,the sentiment analysis of product reviews has gained a lot of attention in linguistic research. In literature, the survey depicts the majority of the research done emphasizes on mere polarity identification of the reviews. The proposed system emphasized on classifying the sentiment polarity and the product aspect identification from the reviews. Proposed work experimented with traditional machine learning techniques as well as deep neural networks such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and Long Short Term Memory(LSTM) Networks. The proposed system gives a better understanding of these algorithms by comparing the outcomes. The Deep Learning approach in the proposed work successfully provides a mechanism which identifies the review polarity and intensity of the reviews and also analyses the short form words used by people in the reviews. The experimental results in this work, applied on amazon product dataset, shows that the LSTM model works the best for sentiment analysis and intensity of reviews with 93% accuracy. This research work also predicts polarity for short-form word reviews which is the common trend these days while writing the reviews.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4861
Author(s):  
Ha An Le ◽  
Trinh Van Van Chien ◽  
Tien Hoa Nguyen ◽  
Hyunseung Choo ◽  
Van Duc Nguyen

Channel estimation plays a critical role in the system performance of wireless networks. In addition, deep learning has demonstrated significant improvements in enhancing the communication reliability and reducing the computational complexity of 5G-and-beyond networks. Even though least squares (LS) estimation is popularly used to obtain channel estimates due to its low cost without any prior statistical information regarding the channel, this method has relatively high estimation error. This paper proposes a new channel estimation architecture with the assistance of deep learning in order to improve the channel estimation obtained by the LS approach. Our goal is achieved by utilizing a MIMO (multiple-input multiple-output) system with a multi-path channel profile for simulations in 5G-and-beyond networks under the level of mobility expressed by the Doppler effects. The system model is constructed for an arbitrary number of transceiver antennas, while the machine learning module is generalized in the sense that an arbitrary neural network architecture can be exploited. Numerical results demonstrate the superiority of the proposed deep learning-based channel estimation framework over the other traditional channel estimation methods popularly used in previous works. In addition, bidirectional long short-term memory offers the best channel estimation quality and the lowest bit error ratio among the considered artificial neural network architectures.


Sign in / Sign up

Export Citation Format

Share Document