scholarly journals Photonic Crystal Polymeric Thin-Film Dye-Lasers for Attachable Strain Sensors

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5331
Author(s):  
Tsan-Wen Lu ◽  
Yu-Kai Feng ◽  
Huan-Yeuh Chu ◽  
Po-Tsung Lee

In this report, using two-dimensional photonic crystals (PhC) and a one-dimensional PhC nano-beam cavity, we realized the development of all-polymeric dye-lasers on a dye-doped, suspended poly-methylmethacrylate film with a wavelength-scale thickness. In addition to the characterization of basic lasing properties, we also evaluated its capacity to serve as an attachable strain sensor. Through experimentation, we confirmed the stable lasing performances of the dye-laser attaching on a rough surface. Moreover, we also theoretically studied the wavelength responses of the utilized PhC resonators to stretching strain and further improved them via the concept of strain shaping. The attachability and high strain sensing response of the presented thin film PhC dye-lasers demonstrate their potential as attachable strain sensors.

Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1970 ◽  
Author(s):  
Donghyeon Ryu ◽  
Alfred Mongare

In this study, a flexible strain sensor is devised using corrugated bilayer thin films consisting of poly(3-hexylthiophene) (P3HT) and poly(3,4-ethylenedioxythiophene)-polystyrene(sulfonate) (PEDOT:PSS). In previous studies, the P3HT-based photoactive non-corrugated thin film was shown to generate direct current (DC) under broadband light, and the generated DC voltage varied with applied tensile strain. Yet, the mechanical resiliency and strain sensing range of the P3HT-based thin film strain sensor were limited due to brittle non-corrugated thin film constituents. To address this issue, it is aimed to design a mechanically resilient strain sensor using corrugated thin film constituents. Buckling is induced to form corrugation in the thin films by applying pre-strain to the substrate, where the thin films are deposited, and releasing the pre-strain afterwards. It is known that corrugated thin film constituents exhibit different optical and electronic properties from non-corrugated ones. Therefore, to design the flexible strain sensor, it was studied to understand how the applied pre-strain and thickness of the PEDOT:PSS conductive thin film affects the optical and electrical properties. In addition, strain effect was investigated on the optical and electrical properties of the corrugated thin film constituents. Finally, flexible strain sensors are fabricated by following the design guideline, which is suggested from the studies on the corrugated thin film constituents, and the DC voltage strain sensing capability of the flexible strain sensors was validated. As a result, the flexible strain sensor exhibited a tensile strain sensing range up to 5% at a frequency up to 15 Hz with a maximum gauge factor ~7.


Polymer ◽  
2004 ◽  
Vol 45 (25) ◽  
pp. 8623-8628 ◽  
Author(s):  
S.C.K. Misra ◽  
Prafull Mathur ◽  
Maneesha Yadav ◽  
M.K. Tiwari ◽  
S.C. Garg ◽  
...  

2019 ◽  
Vol 30 (7) ◽  
pp. 1010-1017
Author(s):  
M Lu ◽  
MH Chen ◽  
ZX Bu ◽  
LS Wang ◽  
L Sun

Adding conductive one-dimensional carbon nanomaterials to poly(dimethysiloxane) can form bio-compatible composites with significant electromechanical (piezoresistive) response. This effect can be effectively tuned by controlling the carbon nanofiller size, concentration, and distribution. However, to be applied as strain sensors, the composite material has to meet mechanical, sensitivity, temperature stability, and reliability requirements. Here we report on the study of cyclic electromechanical behaviors of poly(dimethysiloxane)/carbon nanofiber composites under different temperatures. Through mechanical training, reproducible and sensitive piezoresistive response suitable for large strain sensing can be obtained.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Roopa Hegde ◽  
Koona Ramji ◽  
Swapna Peravali ◽  
Yallappa Shiralgi ◽  
Gurumurthy Hegde ◽  
...  

Multiwalled carbon nanotubes (MWCNTs) were synthesized by the reduction of ethyl alcohol with sodium borohydride (NaBH4) under a strong basic solvent with the high concentration of sodium hydroxide (NaOH). Nanocomposites of different concentration of MWCNT dispersed in poly(3,4-ethylene dioxythiophene) polymerized with poly(4-styrene sulfonate) (PEDOT:PSS) were prepared and deposited on a flexible polyethylene terephthalate (PET) polymer substrates by the spin coating method. The thin films were characterized for their nanostructure and subsequently evaluated for their piezoresistive response. The films were subjected to an incremental strain from 0 to 6% at speed of 0.2 mm/min. The nanocomposite thin film with 0.1 wt% of MWCNT exhibits the highest gauge factor of 22.8 at 6% strain as well as the highest conductivity of 13.5 S/m. Hence, the fabricated thin film was found to be suitable for piezoresistive flexible strain sensing applications.


2016 ◽  
Vol 3 (3) ◽  
pp. 248-255 ◽  
Author(s):  
Tingting Yang ◽  
Xinming Li ◽  
Xin Jiang ◽  
Shuyuan Lin ◽  
Junchao Lao ◽  
...  

A strain sensing structure with high gauge factors (GFs) is designed by engineering channel cracks in a gold thin film. The developed strain sensors possess GFs as high as 200 (ε < 0.5%), 1000 (0.5% < ε < 0.7%), and even exceeding 5000 (0.7% < ε < 1%).


2007 ◽  
Vol 124-126 ◽  
pp. 113-118
Author(s):  
Byung Young Shim ◽  
Eun A Ko ◽  
Dong Wook Kim ◽  
Cheul Ro Lee

We have studied the Au+Ga alloy seeding method. Single-crystal GaN nano-column arrays were grown using metalorganic chemical vapor deposition (MOCVD) and their properties were investigated as a function of the growth parameters and Au thin film thickness. Au-coated Si(111) substrates were used for the growth of GaN nano-columns. The diameter and length of as-grown nano-column ranged from 100 to 500 nm and 1 to 5 μm, respectively. The morphology of the columns was investigated using scanning electron microscopy. Energy dispersive X-ray spectroscopy and photoluminescence were used for evaluating of its qualitative analysis and to evaluate the optical properties, respectively. Two important growth parameters were considered, the thickness of the Au thin film and the gallium flow rate. The density and tendency of the nano-columns depend on each of these growth parameters. It is believed that the catalytic activity of gold is determined by the size of the Au+Ga solid solution particles, and smaller Au+Ga clusters showed significant reactivity in the growth of one-dimensional GaN nano structures.


Author(s):  
E. L. Hall ◽  
A. Mogro-Campero ◽  
L. G. Turner ◽  
N. Lewis

There is great interest in the growth of thin superconducting films of YBa2Cu3Ox on silicon, since this is a necessary first step in the use of this superconductor in a variety of possible electronic applications including interconnects and hybrid semiconductor/superconductor devices. However, initial experiments in this area showed that drastic interdiffusion of Si into the superconductor occurred during annealing if the Y-Ba-Cu-O was deposited direcdy on Si or SiO2, and this interdiffusion destroyed the superconducting properties. This paper describes the results of the use of a zirconia buffer layer as a diffusion barrier in the growth of thin YBa2Cu3Ox films on Si. A more complete description of the growth and characterization of these films will be published elsewhere.Thin film deposition was carried out by sequential electron beam evaporation in vacuum onto clean or oxidized single crystal Si wafers. The first layer evaporated was 0.4 μm of zirconia.


Author(s):  
Gyeung Ho Kim ◽  
Mehmet Sarikaya ◽  
D. L. Milius ◽  
I. A. Aksay

Cermets are designed to optimize the mechanical properties of ceramics (hard and strong component) and metals (ductile and tough component) into one system. However, the processing of such systems is a problem in obtaining fully dense composite without deleterious reaction products. In the lightweight (2.65 g/cc) B4C-Al cermet, many of the processing problems have been circumvented. It is now possible to process fully dense B4C-Al cermet with tailored microstructures and achieve unique combination of mechanical properties (fracture strength of over 600 MPa and fracture toughness of 12 MPa-m1/2). In this paper, microstructure and fractography of B4C-Al cermets, tested under dynamic and static loading conditions, are described.The cermet is prepared by infiltration of Al at 1150°C into partially sintered B4C compact under vacuum to full density. Fracture surface replicas were prepared by using cellulose acetate and thin-film carbon deposition. Samples were observed with a Philips 3000 at 100 kV.


Sign in / Sign up

Export Citation Format

Share Document