scholarly journals Nonprehensile Manipulation of Parts on a Horizontal Circularly Oscillating Platform with Dynamic Dry Friction Control

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5581
Author(s):  
Sigitas Kilikevičius ◽  
Kristina Liutkauskienė ◽  
Algimantas Fedaravičius

This paper presents a novel method for nonprehensile manipulation of parts on a circularly oscillating platform when the effective coefficient of dry friction between the part and the platform is being dynamically controlled. Theoretical and experimental analyses have been performed to validate the proposed method and to determine the control parameters that define the characteristics of the part’s motion. A mathematical model of the manipulation process with dynamic dry friction control was developed and solved. The modeling showed that by changing the phase shift between the function for dynamic dry friction control and the function defining the circular motion of the platform, the part can be moved in any direction as the angle of displacement can be controlled in a full range from 0 to 2π. The nature of the trajectory and the mean displacement velocity of the part mainly depend on the width of the rectangular function for dynamic dry friction control. To verify the theoretical findings, an experimental setup was developed, and experiments of manipulation were carried out. The experimental results qualitatively confirmed the theoretical findings. The presented analysis enriches the classical theories of nonprehensile manipulation on oscillating platforms, and the presented findings are relevant for mechatronics, robotics, mechanics, electronics, medical, and other industries.

Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1087
Author(s):  
Sigitas Kilikevičius ◽  
Algimantas Fedaravičius ◽  
Virginija Daukantienė ◽  
Kristina Liutkauskienė ◽  
Linas Paukštaitis

Currently used nonprehensile manipulation systems that are based on vibrational techniques employ temporal (vibrational) asymmetry, spatial asymmetry, or force asymmetry to provide and control a directional motion of a body. This paper presents a novel method of nonprehensile manipulation of miniature and microminiature bodies on a harmonically oscillating platform by creating a frictional asymmetry through dynamic dry friction control. To theoretically verify the feasibility of the method and to determine the control parameters that define the motion characteristics, a mathematical model was developed, and modeling was carried out. Experimental setups for miniature and microminiature bodies were developed for nonprehensile manipulation by dry friction control, and manipulation experiments were carried out to experimentally verify the feasibility of the proposed method and theoretical findings. By revealing how characteristic control parameters influence the direction and velocity, the modeling results theoretically verified the feasibility of the proposed method. The experimental investigation verified that the proposed method is technically feasible and can be applied in practice, as well as confirmed the theoretical findings that the velocity and direction of the body can be controlled by changing the parameters of the function for dynamic dry friction control. The presented research enriches the classical theories of manipulation methods on vibrating plates and platforms, as well as the presented results, are relevant for industries dealing with feeding, assembling, or manipulation of miniature and microminiature bodies.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7280
Author(s):  
Sigitas Kilikevičius ◽  
Algimantas Fedaravičius

Currently used vibrational transportation methods are usually based on asymmetries of geometric, kinematic, wave, or time types. This paper investigates the vibrational transportation of objects on a platform that is subjected to sinusoidal displacement cycles, employing periodic dynamic dry friction control. This manner of dry friction control creates an asymmetry, which is necessary to move the object. The theoretical investigation on functional capabilities and transportation regimes was carried out using a developed parametric mathematical model, and the control parameters that determine the transportation characteristics such as velocity and direction were defined. To test the functional capabilities of the proposed method, an experimental setup was developed, and experiments were carried out. The results of the presented research indicate that the proposed method ensures smooth control of the transportation velocity in a wide range and allows it to change the direction of motion. Moreover, the proposed method offers other new functional capabilities, such as a capability to move individual objects on the same platform in opposite directions and at different velocities at the same time by imposing different friction control parameters on different regions of the platform or on different objects. In addition, objects can be subjected to translation and rotation at the same time by imposing different friction control parameters on different regions of the platform. The presented research extends the classical theory of vibrational transportation and has a practical value for industries that operate manufacturing systems performing tasks such as handling and transportation, positioning, feeding, sorting, aligning, or assembling.


2014 ◽  
Vol 26 (01) ◽  
pp. 1450002 ◽  
Author(s):  
Hanguang Xiao

The early detection and intervention of artery stenosis is very important to reduce the mortality of cardiovascular disease. A novel method for predicting artery stenosis was proposed by using the input impedance of the systemic arterial tree and support vector machine (SVM). Based on the built transmission line model of a 55-segment systemic arterial tree, the input impedance of the arterial tree was calculated by using a recursive algorithm. A sample database of the input impedance was established by specifying the different positions and degrees of artery stenosis. A SVM prediction model was trained by using the sample database. 10-fold cross-validation was used to evaluate the performance of the SVM. The effects of stenosis position and degree on the accuracy of the prediction were discussed. The results showed that the mean specificity, sensitivity and overall accuracy of the SVM are 80.2%, 98.2% and 89.2%, respectively, for the 50% threshold of stenosis degree. Increasing the threshold of the stenosis degree from 10% to 90% increases the overall accuracy from 82.2% to 97.4%. Increasing the distance of the stenosis artery from the heart gradually decreases the overall accuracy from 97.1% to 58%. The deterioration of the stenosis degree to 90% increases the prediction accuracy of the SVM to more than 90% for the stenosis of peripheral artery. The simulation demonstrated theoretically the feasibility of the proposed method for predicting artery stenosis via the input impedance of the systemic arterial tree and SVM.


Development ◽  
1999 ◽  
Vol 126 (24) ◽  
pp. 5635-5644 ◽  
Author(s):  
M.E. Griffith ◽  
A. da Silva Conceicao ◽  
D.R. Smyth

PETAL LOSS is a new class of flower development gene whose mutant phenotype is confined mostly to the second whorl. Two properties are disrupted, organ initiation and organ orientation. Initiation is frequently blocked, especially in later-formed flowers, or variably delayed. The few petals that arise occupy a wider zone of the flower primordium than normal. Also, a minority of petals are trumpet-shaped, thread-like or stamenoid. Studies of ptl combined with homeotic mutants have revealed that the mutant effect is specific to the second whorl, not to organs with a petal identity. We propose that the PTL gene normally promotes the induction of organ primordia in specific regions of the second floral whorl. In ptl mutants, these regions are enlarged and organ induction is variably reduced, often falling below a threshold. A dominant genetic modifier of the ptl mutant phenotype was found in the Landsberg erecta strain that significantly boosts the mean number of petals per flower, perhaps by reinforcing induction so that the threshold is now more often reached. The second major disruption in ptl mutants relates to the orientation adopted by second whorl organs from early in their development. In single mutants the full range of orientations is seen, but when B function (controlling organ identity) is also removed, most second whorl organs now face outwards rather than inwards. Orientation is unaffected in B function single mutants. Thus petals apparently perceive their orientation within the flower primordium by a mechanism requiring PTL function supported redundantly by that of B class genes.


2014 ◽  
Vol 22 (1) ◽  
Author(s):  
Robert Cooperstein ◽  
Morgan Young

Abstract Background Upright examination procedures like radiology, thermography, manual muscle testing, and spinal motion palpation may lead to spinal interventions with the patient prone. The reliability and accuracy of mapping upright examination findings to the prone position is unknown. This study had 2 primary goals: (1) investigate how erroneous spine-scapular landmark associations may lead to errors in treating and charting spine levels; and (2) study the interexaminer reliability of a novel method for mapping upright spinal sites to the prone position. Methods Experiment 1 was a thought experiment exploring the consequences of depending on the erroneous landmark association of the inferior scapular tip with the T7 spinous process upright and T6 spinous process prone (relatively recent studies suggest these levels are T8 and T9, respectively). This allowed deduction of targeting and charting errors. In experiment 2, 10 examiners (2 experienced, 8 novice) used an index finger to maintain contact with a mid-thoracic spinous process as each of 2 participants slowly moved from the upright to the prone position. Interexaminer reliability was assessed by computing Intraclass Correlation Coefficient, standard error of the mean, root mean squared error, and the absolute value of the mean difference for each examiner from the 10 examiner mean for each of the 2 participants. Results The thought experiment suggesting that using the (inaccurate) scapular tip landmark rule would result in a 3 level targeting and charting error when radiological findings are mapped to the prone position. Physical upright exam procedures like motion palpation would result in a 2 level targeting error for intervention, and a 3 level error for charting. The reliability experiment showed examiners accurately maintained contact with the same thoracic spinous process as the participant went from upright to prone, ICC (2,1) = 0.83. Conclusions As manual therapists, the authors have emphasized how targeting errors may impact upon manual care of the spine. Practitioners in other fields that need to accurately locate spinal levels, such as acupuncture and anesthesiology, would also be expected to draw important conclusions from these findings.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Santiago Tello-Mijares ◽  
Francisco Flores

The identification of pollen in an automated way will accelerate different tasks and applications of palynology to aid in, among others, climate change studies, medical allergies calendar, and forensic science. The aim of this paper is to develop a system that automatically captures a hundred microscopic images of pollen and classifies them into the 12 different species from Lagunera Region, Mexico. Many times, the pollen is overlapping on the microscopic images, which increases the difficulty for its automated identification and classification. This paper focuses on a method to segment the overlapping pollen. First, the proposed method segments the overlapping pollen. Second, the method separates the pollen based on the mean shift process (100% segmentation) and erosion by H-minima based on the Fibonacci series. Thus, pollen is characterized by its shape, color, and texture for training and evaluating the performance of three classification techniques: random tree forest, multilayer perceptron, and Bayes net. Using the newly developed system, we obtained segmentation results of 100% and classification on top of 96.2% and 96.1% in recall and precision using multilayer perceptron in twofold cross validation.


2020 ◽  
Author(s):  
Filip Potempski ◽  
Andrea Sabo ◽  
Kara K Patterson

AbstractDance interventions are more effective at improving gait and balance outcomes than other rehabilitation interventions. Repeated training may culminate in superior motor performance compared to other interventions without synchronization. This technical note will describe a novel method using a deep learning-based 2D pose estimator: OpenPose, alongside beat analysis of music to quantify movement-music synchrony during salsa dancing. This method has four components: i) camera setup and recording, ii) tempo/downbeat analysis and waveform cleanup, iii) OpenPose estimation and data extraction, and iv) synchronization analysis. Two trials were recorded: one in which the dancer danced synchronously to the music and one where they did not. The salsa dancer performed a solo basic salsa step continuously for 90 seconds to a salsa track while their movements and the music were recorded with a webcam. This data was then extracted from OpenPose and analyzed. The mean synchronization value for both feet was significantly lower in the synchronous condition than the asynchronous condition, indicating that this is an effective means to track and quantify a dancer’s movement and synchrony while performing a basic salsa step.


2007 ◽  
Vol 1049 ◽  
Author(s):  
Jeffrey B. Sokoloff

AbstractIt is shown using a method based on the mean field theory of Miklavic Marcelja that it should be possible for osmotic pressure due to the counterions associated with the two polyelectrolyte polymer brush coated surfaces to support a reasonable load (i.e., about 105 Pa) with the brushes held sufficiently far apart to prevent entanglement of polymers belonging to the two brushes, thus avoiding what is likely to be the dominant mechanisms for static and dry friction.


2021 ◽  
Author(s):  
Hayfa Zayani ◽  
Youssef Fouad ◽  
Didier Michot ◽  
Zeineb Kassouk ◽  
Zohra Lili-Chabaane ◽  
...  

<p>Visible-Near Infrared (Vis-NIR) spectroscopy has proven its efficiency in predicting several soil properties such as soil organic carbon (SOC) content. In this preliminary study, we explored the ability of Vis-NIR to assess the temporal evolution of SOC content. Soil samples were collected in a watershed (ORE AgrHys), located in Brittany (Western France). Two sampling campaigns were carried out 5 years apart: in 2013, 198 soil samples were collected respectively at two depths (0-15 and 15-25 cm) over an area of 1200 ha including different land use and land cover; in 2018, 111 sampling points out of 198 of 2013 were selected and soil samples were collected from the same two depths. Whole samples were analyzed for their SOC content and were scanned for their reflectance spectrum. Spectral information was acquired from samples sieved at 2 mm fraction and oven dried at 40°C, 24h prior to spectra acquisition, with a full range Vis-NIR spectroradiometer ASD Fieldspec®3. Data set of 2013 was used to calibrate the SOC content prediction model by the mean of Partial Least Squares Regression (PLSR). Data set of 2018 was therefore used as test set. Our results showed that the variation ∆SOC<sub>obs</sub><sub></sub>obtained from observed values in 2013 and 2018 (∆SOC<sub>obs</sub> = Observed SOC (2018) - Observed SOC (2013)) is ranging from 0.1 to 25.9 g/kg. Moreover, our results showed that the prediction performance of the calibrated model was improved by including 11 spectra of 2018 in the 2013 calibration data set (R²= 0.87, RMSE = 5.1 g/kg and RPD = 1.92). Furthermore, the comparison of predicted and observed ∆SOC between 2018 and 2013 showed that 69% of the variations were of the same sign, either positive or negative. For the remaining 31%, the variations were of opposite signs but concerned mainly samples for which ∆SOCobs is less than 1,5 g/kg. These results reveal that Vis-NIR spectroscopy was potentially appropriate to detect variations of SOC content and are encouraging to further explore Vis-NIR spectroscopy to detect changes in soil carbon stocks.</p>


2020 ◽  
Vol 7 (4) ◽  
pp. 191569
Author(s):  
Edoardo Lisi ◽  
Mohammad Malekzadeh ◽  
Hamed Haddadi ◽  
F. Din-Houn Lau ◽  
Seth Flaxman

Conditional generative adversarial networks (CGANs) are a recent and popular method for generating samples from a probability distribution conditioned on latent information. The latent information often comes in the form of a discrete label from a small set. We propose a novel method for training CGANs which allows us to condition on a sequence of continuous latent distributions f (1) , …, f ( K ) . This training allows CGANs to generate samples from a sequence of distributions. We apply our method to paintings from a sequence of artistic movements, where each movement is considered to be its own distribution. Exploiting the temporal aspect of the data, a vector autoregressive (VAR) model is fitted to the means of the latent distributions that we learn, and used for one-step-ahead forecasting, to predict the latent distribution of a future art movement f ( K +1) . Realizations from this distribution can be used by the CGAN to generate ‘future’ paintings. In experiments, this novel methodology generates accurate predictions of the evolution of art. The training set consists of a large dataset of past paintings. While there is no agreement on exactly what current art period we find ourselves in, we test on plausible candidate sets of present art, and show that the mean distance to our predictions is small.


Sign in / Sign up

Export Citation Format

Share Document