scholarly journals Emerging Optical Materials in Sensing and Discovery of Bioactive Compounds

Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5784
Author(s):  
Raquel Vaz ◽  
Beatriz Valpradinhos ◽  
Manuela F. Frasco ◽  
Maria Goreti F. Sales

Optical biosensors are used in numerous applications and analytical fields. Advances in these sensor platforms offer high sensitivity, selectivity, miniaturization, and real-time analysis, among many other advantages. Research into bioactive natural products serves both to protect against potentially dangerous toxic compounds and to promote pharmacological innovation in drug discovery, as these compounds have unique chemical compositions that may be characterized by greater safety and efficacy. However, conventional methods for detecting these biomolecules have drawbacks, as they are time-consuming and expensive. As an alternative, optical biosensors offer a faster, simpler, and less expensive means of detecting various biomolecules of clinical interest. In this review, an overview of recent developments in optical biosensors for the detection and monitoring of aquatic biotoxins to prevent public health risks is first provided. In addition, the advantages and applicability of these biosensors in the field of drug discovery, including high-throughput screening, are discussed. The contribution of the investigated technological advances in the timely and sensitive detection of biotoxins while deciphering the pathways to discover bioactive compounds with great health-promoting prospects is envisaged to meet the increasing demands of healthcare systems.

Author(s):  
Beatriz de las Heras Polo

Natural products have historically contributed to drug discovery as a source of bioactive molecules, due to their great diversity and structural complexity. They have provided “lead” molecules for the development of drugs in different therapeutic areas, with a very prominent representation in the treatment of pain and inflammation, coagulation disorders, metabolic disorders, as well as in the treatment of cancer and infectious diseases. In recent decades there has been a paradigm shift in drug discovery strategies that has allowed the identification of new active natural products in therapeutic targets. Combinatorial Chemistry and biological tests (High Throughput Screening), together with the development of computational techniques, have contributed decisively to the design and optimization of libraries of natural product derivatives based on their biological activity. In parallel, technological advances in the field of Omics sciences and in data processing lead to a multidimensional approach in the drug discovery process. These powerful tools will allow the analysis of the pharmacological potential of natural products and their derivatives for the conversion of these molecules to active products with low toxicity. In the Precision Medicine era, natural products continue to be molecules with great potential in pharmaceutical development, since, unlike other therapeutic strategies, they have a favorable cost-benefit ratio, which will allow their future use in this discipline.


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3287 ◽  
Author(s):  
Berin Karaman Mayack ◽  
Wolfgang Sippl ◽  
Fidele Ntie-Kang

Natural products have been used for the treatment of human diseases since ancient history. Over time, due to the lack of precise tools and techniques for the separation, purification, and structural elucidation of active constituents in natural resources there has been a decline in financial support and efforts in characterization of natural products. Advances in the design of chemical compounds and the understanding of their functions is of pharmacological importance for the biomedical field. However, natural products regained attention as sources of novel drug candidates upon recent developments and progress in technology. Natural compounds were shown to bear an inherent ability to bind to biomacromolecules and cover an unparalleled chemical space in comparison to most libraries used for high-throughput screening. Thus, natural products hold a great potential for the drug discovery of new scaffolds for therapeutic targets such as sirtuins. Sirtuins are Class III histone deacetylases that have been linked to many diseases such as Parkinson`s disease, Alzheimer’s disease, type II diabetes, and cancer linked to aging. In this review, we examine the revitalization of interest in natural products for drug discovery and discuss natural product modulators of sirtuins that could serve as a starting point for the development of isoform selective and highly potent drug-like compounds, as well as the potential application of naturally occurring sirtuin inhibitors in human health and those in clinical trials.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Laurianne David ◽  
Amol Thakkar ◽  
Rocío Mercado ◽  
Ola Engkvist

Abstract The technological advances of the past century, marked by the computer revolution and the advent of high-throughput screening technologies in drug discovery, opened the path to the computational analysis and visualization of bioactive molecules. For this purpose, it became necessary to represent molecules in a syntax that would be readable by computers and understandable by scientists of various fields. A large number of chemical representations have been developed over the years, their numerosity being due to the fast development of computers and the complexity of producing a representation that encompasses all structural and chemical characteristics. We present here some of the most popular electronic molecular and macromolecular representations used in drug discovery, many of which are based on graph representations. Furthermore, we describe applications of these representations in AI-driven drug discovery. Our aim is to provide a brief guide on structural representations that are essential to the practice of AI in drug discovery. This review serves as a guide for researchers who have little experience with the handling of chemical representations and plan to work on applications at the interface of these fields.


Micromachines ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 397 ◽  
Author(s):  
Zhenguo Zhang ◽  
Yulin Cong ◽  
Yichun Huang ◽  
Xin Du

With the development of nanomaterials and sensor technology, nanomaterials-based electrochemical immunosensors have been widely employed in various fields. Nanomaterials for electrode modification are emerging one after another in order to improve the performance of electrochemical immunosensors. When compared with traditional detection methods, electrochemical immunosensors have the advantages of simplicity, real-time analysis, high sensitivity, miniaturization, rapid detection time, and low cost. Here, we summarize recent developments in electrochemical immunosensors based on nanomaterials, including carbon nanomaterials, metal nanomaterials, and quantum dots. Additionally, we discuss research challenges and future prospects for this field of study.


Micromachines ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 222 ◽  
Author(s):  
Zhenguo Zhang ◽  
Jun Zhou ◽  
Xin Du

Foodborne safety has become a global public health problem in both developed and developing countries. The rapid and precise monitoring and detection of foodborne pathogens has generated a strong interest by researchers in order to control and prevent human foodborne infections. Traditional methods for the detection of foodborne pathogens are often time-consuming, laborious, expensive, and unable to satisfy the demands of rapid food testing. Owing to the advantages of simplicity, real-time analysis, high sensitivity, miniaturization, rapid detection time, and low cost, electrochemical biosensing technology is more and more widely used in determination of foodborne pathogens. Here, we summarize recent developments in electrochemical biosensing technologies used to detect common foodborne pathogens. Additionally, we discuss research challenges and future prospects for this field of study.


Author(s):  
Berin Karaman Mayack ◽  
Wolfgang Sippl ◽  
Fidele Ntie-Kang

Natural products have been used for the treatment of human diseases since ancient history. Over time, due to the lack of precise tools and techniques for the separation, purification, and structural elucidation of active constituents in natural resources there has been a decline in financial support and efforts in characterization of natural products. Advances in the design of chemical compounds and the understanding of their functions is of pharmacological importance for the biomedical field. However, natural products regained attention as sources of novel drug candidates upon recent developments and progress in technology. Natural compounds were shown to bear an inherent ability to bind to biomacromolecules and cover an unparalleled chemical space in comparison to most libraries used for high-throughput screening. Thus, natural products hold a great potential for the drug discovery of new scaffolds for therapeutic targets such as Sirtuins. Sirtuins are Class III histone deacetylases that have been linked to many diseases such as Parkinson`s disease, Alzheimer’s disease, type II diabetes, and cancer linked to aging. In this review, we examine the revitalization of interest in natural products for drug discovery and discuss natural product modulators of Sirtuins that could serve as a starting point for the development of isoform selective and highly potent drug-like compounds.


Author(s):  
Minu Mathew ◽  
Chandra Sekhar Rout

This review details the fundamentals, working principles and recent developments of Schottky junctions based on 2D materials to emphasize their improved gas sensing properties including low working temperature, high sensitivity, and selectivity.


2003 ◽  
Vol 9 (1) ◽  
pp. 49-58
Author(s):  
Margit Asmild ◽  
Nicholas Oswald ◽  
Karen M. Krzywkowski ◽  
Søren Friis ◽  
Rasmus B. Jacobsen ◽  
...  

2019 ◽  
Vol 26 (13) ◽  
pp. 2330-2355 ◽  
Author(s):  
Anutthaman Parthasarathy ◽  
Sasikala K. Anandamma ◽  
Karunakaran A. Kalesh

Peptide therapeutics has made tremendous progress in the past decade. Many of the inherent weaknesses of peptides which hampered their development as therapeutics are now more or less effectively tackled with recent scientific and technological advancements in integrated drug discovery settings. These include recent developments in synthetic organic chemistry, high-throughput recombinant production strategies, highresolution analytical methods, high-throughput screening options, ingenious drug delivery strategies and novel formulation preparations. Here, we will briefly describe the key methodologies and strategies used in the therapeutic peptide development processes with selected examples of the most recent developments in the field. The aim of this review is to highlight the viable options a medicinal chemist may consider in order to improve a specific pharmacological property of interest in a peptide lead entity and thereby rationally assess the therapeutic potential this class of molecules possesses while they are traditionally (and incorrectly) considered ‘undruggable’.


Sign in / Sign up

Export Citation Format

Share Document