scholarly journals A Novel Automate Python Edge-to-Edge: From Automated Generation on Cloud to User Application Deployment on Edge of Deep Neural Networks for Low Power IoT Systems FPGA-Based Acceleration

Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6050
Author(s):  
Tarek Belabed ◽  
Vitor Ramos Gomes da Silva ◽  
Alexandre Quenon ◽  
Carlos Valderamma ◽  
Chokri Souani

Deep Neural Networks (DNNs) deployment for IoT Edge applications requires strong skills in hardware and software. In this paper, a novel design framework fully automated for Edge applications is proposed to perform such a deployment on System-on-Chips. Based on a high-level Python interface that mimics the leading Deep Learning software frameworks, it offers an easy way to implement a hardware-accelerated DNN on an FPGA. To do this, our design methodology covers the three main phases: (a) customization: where the user specifies the optimizations needed on each DNN layer, (b) generation: the framework generates on the Cloud the necessary binaries for both FPGA and software parts, and (c) deployment: the SoC on the Edge receives the resulting files serving to program the FPGA and related Python libraries for user applications. Among the study cases, an optimized DNN for the MNIST database can speed up more than 60× a software version on the ZYNQ 7020 SoC and still consume less than 0.43W. A comparison with the state-of-the-art frameworks demonstrates that our methodology offers the best trade-off between throughput, power consumption, and system cost.

2020 ◽  
Vol 34 (07) ◽  
pp. 11450-11457 ◽  
Author(s):  
Yaoyi Li ◽  
Hongtao Lu

Over the last few years, deep learning based approaches have achieved outstanding improvements in natural image matting. Many of these methods can generate visually plausible alpha estimations, but typically yield blurry structures or textures in the semitransparent area. This is due to the local ambiguity of transparent objects. One possible solution is to leverage the far-surrounding information to estimate the local opacity. Traditional affinity-based methods often suffer from the high computational complexity, which are not suitable for high resolution alpha estimation. Inspired by affinity-based method and the successes of contextual attention in inpainting, we develop a novel end-to-end approach for natural image matting with a guided contextual attention module, which is specifically designed for image matting. Guided contextual attention module directly propagates high-level opacity information globally based on the learned low-level affinity. The proposed method can mimic information flow of affinity-based methods and utilize rich features learned by deep neural networks simultaneously. Experiment results on Composition-1k testing set and alphamatting.com benchmark dataset demonstrate that our method outperforms state-of-the-art approaches in natural image matting. Code and models are available at https://github.com/Yaoyi-Li/GCA-Matting.


Algorithms ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 39
Author(s):  
Carlos Lassance ◽  
Vincent Gripon ◽  
Antonio Ortega

Deep Learning (DL) has attracted a lot of attention for its ability to reach state-of-the-art performance in many machine learning tasks. The core principle of DL methods consists of training composite architectures in an end-to-end fashion, where inputs are associated with outputs trained to optimize an objective function. Because of their compositional nature, DL architectures naturally exhibit several intermediate representations of the inputs, which belong to so-called latent spaces. When treated individually, these intermediate representations are most of the time unconstrained during the learning process, as it is unclear which properties should be favored. However, when processing a batch of inputs concurrently, the corresponding set of intermediate representations exhibit relations (what we call a geometry) on which desired properties can be sought. In this work, we show that it is possible to introduce constraints on these latent geometries to address various problems. In more detail, we propose to represent geometries by constructing similarity graphs from the intermediate representations obtained when processing a batch of inputs. By constraining these Latent Geometry Graphs (LGGs), we address the three following problems: (i) reproducing the behavior of a teacher architecture is achieved by mimicking its geometry, (ii) designing efficient embeddings for classification is achieved by targeting specific geometries, and (iii) robustness to deviations on inputs is achieved via enforcing smooth variation of geometry between consecutive latent spaces. Using standard vision benchmarks, we demonstrate the ability of the proposed geometry-based methods in solving the considered problems.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 230
Author(s):  
Jaechan Cho ◽  
Yongchul Jung ◽  
Seongjoo Lee ◽  
Yunho Jung

Binary neural networks (BNNs) have attracted significant interest for the implementation of deep neural networks (DNNs) on resource-constrained edge devices, and various BNN accelerator architectures have been proposed to achieve higher efficiency. BNN accelerators can be divided into two categories: streaming and layer accelerators. Although streaming accelerators designed for a specific BNN network topology provide high throughput, they are infeasible for various sensor applications in edge AI because of their complexity and inflexibility. In contrast, layer accelerators with reasonable resources can support various network topologies, but they operate with the same parallelism for all the layers of the BNN, which degrades throughput performance at certain layers. To overcome this problem, we propose a BNN accelerator with adaptive parallelism that offers high throughput performance in all layers. The proposed accelerator analyzes target layer parameters and operates with optimal parallelism using reasonable resources. In addition, this architecture is able to fully compute all types of BNN layers thanks to its reconfigurability, and it can achieve a higher area–speed efficiency than existing accelerators. In performance evaluation using state-of-the-art BNN topologies, the designed BNN accelerator achieved an area–speed efficiency 9.69 times higher than previous FPGA implementations and 24% higher than existing VLSI implementations for BNNs.


Author(s):  
Jwalin Bhatt ◽  
Khurram Azeem Hashmi ◽  
Muhammad Zeshan Afzal ◽  
Didier Stricker

In any document, graphical elements like tables, figures, and formulas contain essential information. The processing and interpretation of such information require specialized algorithms. Off-the-shelf OCR components cannot process this information reliably. Therefore, an essential step in document analysis pipelines is to detect these graphical components. It leads to a high-level conceptual understanding of the documents that makes digitization of documents viable. Since the advent of deep learning, the performance of deep learning-based object detection has improved many folds. In this work, we outline and summarize the deep learning approaches for detecting graphical page objects in the document images. Therefore, we discuss the most relevant deep learning-based approaches and state-of-the-art graphical page object detection in document images. This work provides a comprehensive understanding of the current state-of-the-art and related challenges. Furthermore, we discuss leading datasets along with the quantitative evaluation. Moreover, it discusses briefly the promising directions that can be utilized for further improvements.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6523
Author(s):  
Pieter Van Van Molle ◽  
Cedric De De Boom ◽  
Tim Verbelen ◽  
Bert Vankeirsbilck ◽  
Jonas De De Vylder ◽  
...  

Deep neural networks have achieved state-of-the-art performance in image classification. Due to this success, deep learning is now also being applied to other data modalities such as multispectral images, lidar and radar data. However, successfully training a deep neural network requires a large reddataset. Therefore, transitioning to a new sensor modality (e.g., from regular camera images to multispectral camera images) might result in a drop in performance, due to the limited availability of data in the new modality. This might hinder the adoption rate and time to market for new sensor technologies. In this paper, we present an approach to leverage the knowledge of a teacher network, that was trained using the original data modality, to improve the performance of a student network on a new data modality: a technique known in literature as knowledge distillation. By applying knowledge distillation to the problem of sensor transition, we can greatly speed up this process. We validate this approach using a multimodal version of the MNIST dataset. Especially when little data is available in the new modality (i.e., 10 images), training with additional teacher supervision results in increased performance, with the student network scoring a test set accuracy of 0.77, compared to an accuracy of 0.37 for the baseline. We also explore two extensions to the default method of knowledge distillation, which we evaluate on a multimodal version of the CIFAR-10 dataset: an annealing scheme for the hyperparameter α and selective knowledge distillation. Of these two, the first yields the best results. Choosing the optimal annealing scheme results in an increase in test set accuracy of 6%. Finally, we apply our method to the real-world use case of skin lesion classification.


2022 ◽  
Vol 6 (1) ◽  
Author(s):  
Marco Rossi ◽  
Sofia Vallecorsa

AbstractIn this work, we investigate different machine learning-based strategies for denoising raw simulation data from the ProtoDUNE experiment. The ProtoDUNE detector is hosted by CERN and it aims to test and calibrate the technologies for DUNE, a forthcoming experiment in neutrino physics. The reconstruction workchain consists of converting digital detector signals into physical high-level quantities. We address the first step in reconstruction, namely raw data denoising, leveraging deep learning algorithms. We design two architectures based on graph neural networks, aiming to enhance the receptive field of basic convolutional neural networks. We benchmark this approach against traditional algorithms implemented by the DUNE collaboration. We test the capabilities of graph neural network hardware accelerator setups to speed up training and inference processes.


2021 ◽  
pp. 1-35
Author(s):  
Aaron R. Voelker ◽  
Peter Blouw ◽  
Xuan Choo ◽  
Nicole Sandra-Yaffa Dumont ◽  
Terrence C. Stewart ◽  
...  

Abstract While neural networks are highly effective at learning task-relevant representations from data, they typically do not learn representations with the kind of symbolic structure that is hypothesized to support high-level cognitive processes, nor do they naturally model such structures within problem domains that are continuous in space and time. To fill these gaps, this work exploits a method for defining vector representations that bind discrete (symbol-like) entities to points in continuous topological spaces in order to simulate and predict the behavior of a range of dynamical systems. These vector representations are spatial semantic pointers (SSPs), and we demonstrate that they can (1) be used to model dynamical systems involving multiple objects represented in a symbol-like manner and (2) be integrated with deep neural networks to predict the future of physical trajectories. These results help unify what have traditionally appeared to be disparate approaches in machine learning.


Author(s):  
Yun-Peng Liu ◽  
Ning Xu ◽  
Yu Zhang ◽  
Xin Geng

The performances of deep neural networks (DNNs) crucially rely on the quality of labeling. In some situations, labels are easily corrupted, and therefore some labels become noisy labels. Thus, designing algorithms that deal with noisy labels is of great importance for learning robust DNNs. However, it is difficult to distinguish between clean labels and noisy labels, which becomes the bottleneck of many methods. To address the problem, this paper proposes a novel method named Label Distribution based Confidence Estimation (LDCE). LDCE estimates the confidence of the observed labels based on label distribution. Then, the boundary between clean labels and noisy labels becomes clear according to confidence scores. To verify the effectiveness of the method, LDCE is combined with the existing learning algorithm to train robust DNNs. Experiments on both synthetic and real-world datasets substantiate the superiority of the proposed algorithm against state-of-the-art methods.


2021 ◽  
Vol 42 (12) ◽  
pp. 124101
Author(s):  
Thomas Hirtz ◽  
Steyn Huurman ◽  
He Tian ◽  
Yi Yang ◽  
Tian-Ling Ren

Abstract In a world where data is increasingly important for making breakthroughs, microelectronics is a field where data is sparse and hard to acquire. Only a few entities have the infrastructure that is required to automate the fabrication and testing of semiconductor devices. This infrastructure is crucial for generating sufficient data for the use of new information technologies. This situation generates a cleavage between most of the researchers and the industry. To address this issue, this paper will introduce a widely applicable approach for creating custom datasets using simulation tools and parallel computing. The multi-I–V curves that we obtained were processed simultaneously using convolutional neural networks, which gave us the ability to predict a full set of device characteristics with a single inference. We prove the potential of this approach through two concrete examples of useful deep learning models that were trained using the generated data. We believe that this work can act as a bridge between the state-of-the-art of data-driven methods and more classical semiconductor research, such as device engineering, yield engineering or process monitoring. Moreover, this research gives the opportunity to anybody to start experimenting with deep neural networks and machine learning in the field of microelectronics, without the need for expensive experimentation infrastructure.


Author(s):  
Hao Yu ◽  
Sen Yang ◽  
Shenghuo Zhu

In distributed training of deep neural networks, parallel minibatch SGD is widely used to speed up the training process by using multiple workers. It uses multiple workers to sample local stochastic gradients in parallel, aggregates all gradients in a single server to obtain the average, and updates each worker’s local model using a SGD update with the averaged gradient. Ideally, parallel mini-batch SGD can achieve a linear speed-up of the training time (with respect to the number of workers) compared with SGD over a single worker. However, such linear scalability in practice is significantly limited by the growing demand for gradient communication as more workers are involved. Model averaging, which periodically averages individual models trained over parallel workers, is another common practice used for distributed training of deep neural networks since (Zinkevich et al. 2010) (McDonald, Hall, and Mann 2010). Compared with parallel mini-batch SGD, the communication overhead of model averaging is significantly reduced. Impressively, tremendous experimental works have verified that model averaging can still achieve a good speed-up of the training time as long as the averaging interval is carefully controlled. However, it remains a mystery in theory why such a simple heuristic works so well. This paper provides a thorough and rigorous theoretical study on why model averaging can work as well as parallel mini-batch SGD with significantly less communication overhead.


Sign in / Sign up

Export Citation Format

Share Document