scholarly journals Use of the Ferroelectric Ceramic Bismuth Titanate as an Ultrasonic Transducer for High Temperatures and Nuclear Radiation

Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6094
Author(s):  
Brian T. Reinhardt ◽  
Bernhard R. Tittmann

Ultrasonic transducers are often used in the nuclear industry as sensors to monitor the health and process status of systems or the components. Some of the after-effects of the Fukushima Daiichi earthquake could have been eased if sensors had been in place inside the four reactors and sensed the overheating causing meltdown and steam explosions. The key element of ultrasonic sensors is the piezoelectric wafer, which is usually derived from lead-zirconate-titanate (Pb(Zr, Ti)O3, PZT). This material loses its piezoelectrical properties at a temperature of about 200 °C. It also undergoes nuclear transmutation. Bismuth titanate (Bi4Ti3O12, BiTi) has been considered as a potential candidate for replacing PZT at the middle of this temperature range, with many possible applications, since it has a Curie–Weiss temperature of about 650 °C. The aim of this article is to describe experimental details for operation in gamma and nuclear radiation concomitant with elevated temperatures and details of the performance of a BiTi sensor during and after irradiation testing. In these experiments, bismuth titanate has been demonstrated to operate up to a fast neutron fluence of 5 ×1020 n/cm2 and gamma radiation of 7.23 × 1021 (gamma/cm2). The results offer a perspective on the state-of the-art for a possible sensor for harsh environments of high temperature, Gamma radiation, and nuclear fluence.

2016 ◽  
Vol 677 ◽  
pp. 8-16 ◽  
Author(s):  
Jaroslava Koťátková ◽  
Jan Zatloukal ◽  
Pavel Reiterman ◽  
Jan Patera ◽  
Zbyněk Hlaváč ◽  
...  

The paper reviews the so far known information about the properties of biological shielding concrete used in the containment vessel of nuclear power plants (NPP) and its behaviour when exposed to radiation. The damage of concrete caused by neutron and gamma radiation as well as by the accompanying generation of heat is described. However, there is not enough data for the proper evaluation of the negative impacts and further research is needed.


2020 ◽  
Vol 225 ◽  
pp. 04012
Author(s):  
JY. Ferrandis ◽  
O. Gatsa ◽  
P. Combette ◽  
D. Fourmentel ◽  
C. Destouches ◽  
...  

In this article we present a first part of the results obtained during an irradiation campaign conducted at the Jozef Stefan Institute to observe the behaviour of piezoelectric materials under gamma and neutron flux. Specific instrumentation has been developed and has enabled the monitoring throughout the irradiation of several materials such as lead zirconate titanate (PZT) or modified Bismuth Titanate (BiT) in either massive or thick film form. Various parameters such as resonance frequency, electromechanical coupling coefficient, electrical capacitance, dielectric losses were measured as a function of the flow and dose received. The results obtained confirm that the samples work up to doses of 10 18 n°/cm2 and that the behaviour of the samples varies according to their composition and form.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gayathri Pillai ◽  
Sheng-Shian Li

AbstractNonlinear physics-based harmonic generators and modulators are critical signal processing technologies for optical and electrical communication. However, most optical modulators lack multi-channel functionality while frequency synthesizers have deficient control of output tones, and they additionally require vacuum, complicated setup, and high-power configurations. Here, we report a piezoelectrically actuated nonlinear Microelectromechanical System (MEMS) based Single-Input-Multiple-Output multi-domain signal processing unit that can simultaneously generate programmable parallel information channels (> 100) in both frequency and spatial domain. This significant number is achieved through the combined electromechanical and material nonlinearity of the Lead Zirconate Titanate thin film while still operating the device in an ambient environment at Complementary-Metal–Oxide–Semiconductor compatible voltages. By electrically detuning the operation point along the nonlinear regime of the resonator, the number of electrical and light-matter interaction signals generated based on higher-order non-Eigen modes can be controlled meticulously. This tunable multichannel generation enabled microdevice is a potential candidate for a wide variety of applications ranging from Radio Frequency communication to quantum photonics with an attractive MEMS-photonics monolithic integration ability.


2018 ◽  
Vol 170 ◽  
pp. 04008
Author(s):  
O. Gatsa ◽  
P. Combette ◽  
E. Rozenkrantz ◽  
D. Fourmentel ◽  
C. Destouches ◽  
...  

In the contemporary world, the measurements in hostile environment is one of the predominant necessity for automotive, aerospace, metallurgy and nuclear plant. The measurement of different parameters in experimental reactors is an important point in nuclear power strategy. In the near past, IES (Institut d’Électronique et des Systèmes) on collaboration with CEA (Commissariat à l’Energie Atomique et aux Energies Alternatives) have developed the first ultrasonic sensor for the application of gas quantity determination that has been tested in a Materials Testing Reactor (MTR). Modern requirements state to labor with the materials that possess stability on its parameters around 350°C in operation temperature. Previous work on PZT components elaboration by screen printing method established the new basis in thick film fabrication and characterization in our laboratory. Our trials on Bismuth Titanate ceramics showed the difficulties related to high electrical conductivity of fabricated samples that postponed further research on this material. Among piezoceramics, the requirements on finding an alternative solution on ceramics that might be easily polarized and fabricated by screen printing approach were resolved by the fabrication of thick film from Sodium Bismuth Titanate (NBT) piezoelectric powder. This material exhibits high Curie temperature, relatively good piezoelectric and coupling coefficients, and it stands to be a good solution for the anticipated application. In this paper, we present NBT thick film fabrication by screen printing, characterization of piezoelectric, dielectric properties and material parameters studies in dependence of temperature. Relatively high resistivity in the range of 1.1013 Ohm.cm for fabricated thick film is explained by Aurivillius structure in which a-and b-layers form perovskite structure between oxides of c-layer. Main results of this study are presented and discussed in terms of feasibility for an application to a new sensor device operating at high temperature level (400°). Piezoelectric parameters enhancement and loss reduction at elevated temperatures are envisaged to be optimized. Further sensor development and test in MTR are expected to be realized in the near future.


Author(s):  
C. Waldon ◽  
R. Morrell ◽  
D. Buckthorpe ◽  
M. Davies ◽  
P. Sherlock

For fusion tokamak reactors the diagnostics and RF heating systems require the use of components with parts made of non-metallic materials. These can form part of the vacuum boundary of the tokamak which is the primary safety boundary and have a function of containing tritium fuel or activated gases and particulate debris. The engineering practices for such components and non-metallic materials are in an early state of preparation and require development to enable systems to be used in a safety and licensing context. Such developments will have to reflect the brittle nature of the materials, and are likely to be based on established arguments developed within the nuclear industry, such as containment and defence in depth. Given these requirements this task is a major challenge. The window systems fall broadly into two categories: • Transmission windows for the input of high-power microwaves to drive and heat the plasma; • Diagnostic windows to monitor the plasma. Currently there are no established fusion design codes that can be used to assure nuclear safety and a consistent engineering approach for either application. This paper reviews the progress made in developing such practices for transmission and diagnostic windows made from ceramic materials. The investigations undertaken and the engineering practices addressed for the tokamak windows generally fall into the following areas: • reviews of potential candidate materials along with a summary of the available property data; • definition of the function of torus window assemblies and an outline of the complexity and variety of design considerations (including historical failures, and statutory requirements); • development of the design methodology for technical ceramics; • definition of the design routes considered and selected (rule, analysis, experiment); • consideration of the material data available (or lack of) for technical ceramics and their failure criteria; • qualification and design of metallic / ceramic joints; • definition of the requirements with regard to quality control, from manufacture to in-service inspection; • development and formation of a draft code procedure. The practices and procedures developed are considered to be an important contribution and significant step forward in the development of a fusion tokamak windows code. Important contributions have been made to the design, procurement and installation philosophies for windows, especially the development of design criteria and the application of pressure proof-testing. This paper provides a review of key requirements and issues, with recommendations to allow development of the code for acceptance by nuclear regulators for tokamaks such as the International Tokamak Experimental Reactor (ITER) and future fusion reactor power plants.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Chong-Chong Mao ◽  
Yu-Feng Li

SrSO4 ceramic was prepared by hot-pressed sintering and its friction behavior was investigated against the Al2O3 ball under the dry sliding condition from room temperature to 800 °C. From room temperature to 400 °C, the tribological properties of SrSO4 ceramic are quite poor with the friction coefficients of 0.65–0.83 and the wear rates of about 10−3 mm3/Nm. With the testing temperature increasing to 600 °C and 800 °C, a brittle to ductile transition of SrSO4 takes place because of the activated slip systems. The friction coefficient and wear rate of SrSO4 ceramic also obviously decrease to 0.37 and about 10−4 mm3/Nm at 800 °C. The significant improvement of the tribological properties is ascribed to the formation of a smooth and continuous SrSO4 lubricating film with excellent ductility and low shear strength at elevated temperature. SrSO4 is considered to be a potential candidate for high-temperature solid lubricant with excellent lubricity.


2017 ◽  
Vol 142 (4) ◽  
pp. 2576-2576 ◽  
Author(s):  
Marc Lethiecq ◽  
Danjela Kuscer ◽  
Julien Bustillo ◽  
Andre-Pierre Abellard ◽  
Tina Bakaric ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document