scholarly journals Tungsten Disulfide Nanotube-Modified Conductive Paper-Based Chemiresistive Sensor for the Application in Volatile Organic Compounds’ Detection

Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6121
Author(s):  
Song-Jeng Huang ◽  
Philip Nathaniel Immanuel ◽  
Yi-Kuang Yen ◽  
Ching-Lung Yen ◽  
Chi-En Tseng ◽  
...  

Toxic and nontoxic volatile organic compound (VOC) gases are emitted into the atmosphere from certain solids and liquids as a consequence of wastage and some common daily activities. Inhalation of toxic VOCs has an adverse effect on human health, so it is necessary to monitor their concentration in the atmosphere. In this work, we report on the fabrication of inorganic nanotube (INT)-tungsten disulfide, paper-based graphene–PEDOT:PSS sheet and WS2 nanotube-modified conductive paper-based chemiresistors for VOC gas sensing. The WS2 nanotubes were fabricated by a two-step reaction, that is oxide reduction and sulfurization, carried out at 900 °C. The synthesized nanotubes were characterized by FE-SEM, EDS, XRD, Raman spectroscopy, and TEM. The synthesized nanotubes were 206–267 nm in diameter. The FE-SEM results show the length of the nanotubes to be 4.5–8 µm. The graphene–PEDOT:PSS hybrid conductive paper sheet was fabricated by a continuous coating process. Then, WS2 nanotubes were drop-cast onto conductive paper for fabrication of the chemiresistors. The feasibility and sensitivity of the WS2 nanotube-modified paper-based chemiresistor were tested in four VOC gases at different concentrations at room temperature (RT). Experimental results show the proposed sensor to be more sensitive to butanol gas when the concentration ranges from 50 to 1000 ppm. The limit of detection (LOD) of this chemiresistor for butanol gas was 44.92 ppm. The WS2 nanotube-modified paper-based chemiresistor exhibits good potential as a VOC sensor with the advantages of flexibility, easy fabrication, and low fabrication cost.

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 440
Author(s):  
Daniel Garcia-Osorio ◽  
Pilar Hidalgo-Falla ◽  
Henrique E. M. Peres ◽  
Josue M. Gonçalves ◽  
Koiti Araki ◽  
...  

Gas sensors are fundamental for continuous online monitoring of volatile organic compounds. Gas sensors based on semiconductor materials have demonstrated to be highly competitive, but are generally made of expensive materials and operate at high temperatures, which are drawbacks of these technologies. Herein is described a novel ethanol sensor for room temperature (25 °C) measurements based on hematite (α‑Fe2O3)/silver nanoparticles. The AgNPs were shown to increase the oxide semiconductor charge carrier density, but especially to enhance the ethanol adsorption rate boosting the selectivity and sensitivity, thus allowing quantification of ethanol vapor in 2–35 mg L−1 range with an excellent linear relationship. In addition, the α-Fe2O3/Ag 3.0 wt% nanocomposite is cheap, and easy to make and process, imparting high perspectives for real applications in breath analyzers and/or sensors in food and beverage industries. This work contributes to the advance of gas sensing at ambient temperature as a competitive alternative for quantification of conventional volatile organic compounds.


MRS Advances ◽  
2016 ◽  
Vol 1 (19) ◽  
pp. 1359-1364 ◽  
Author(s):  
So Matsuyama ◽  
Tomoaki Sugiyama ◽  
Toshiyuki Ikoma ◽  
Jeffrey S. Cross

ABSTRACTDetection of volatile organic compounds (VOCs) emitted from cancerous tumor cells in exhaled human breath allows for early diagnosis of various types of cancers. 3D graphene with a large surface area is considered a suitable material for creating novel sensitive VOCs sensors. In this study, 3D graphene and 3D graphene oxide were synthesized from graphene oxide suspension, hydroquinone and formaldehyde by employing polymerization and reduction. The capability of VOC gas sensing was evaluated by measuring the electrical current response in flowing N2 gas over a range of concentrations of acetone or 1-butanol at room temperature. It was observed that the device current correlated well with the VOC concentration. The adsorption of acetone decreased the current, but the adsorption of 1-butanol increased the current during sensing. 3D graphene oxide device was more sensitive than 3D graphene device because of the high concentration of oxygen-containing functional groups on the surface. These results indicated that 3D graphene and 3D graphene oxide may be the suitable materials for VOCs sensing devices.


RSC Advances ◽  
2015 ◽  
Vol 5 (71) ◽  
pp. 57559-57567 ◽  
Author(s):  
Jaber Nasrollah Gavgani ◽  
Hamed Sharifi Dehsari ◽  
Amirhossein Hasani ◽  
Mojtaba Mahyari ◽  
Elham Khodabakhshi Shalamzari ◽  
...  

A highly efficient VOC sensor based on N-doped graphene quantum dots (N-GQDs)/poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate) (PEDOT–PSS) was fabricated at room temperature.


2018 ◽  
Vol 10 (35) ◽  
pp. 29972-29981 ◽  
Author(s):  
Kelsey Haddad ◽  
Ahmed Abokifa ◽  
Shalinee Kavadiya ◽  
Byeongdu Lee ◽  
Sriya Banerjee ◽  
...  

2021 ◽  
Vol 21 (9) ◽  
pp. 4779-4785
Author(s):  
Sanju Rani ◽  
Manoj Kumar ◽  
Yogesh Singh ◽  
Monika Tomar ◽  
Anjali Sharma ◽  
...  

Air pollution is a big concern as it causes harm to human health as well as environment. NO2 can cause several respiratory diseases even in low concentration and therefore an efficient sensor for detecting NO2 at room temperature has become one of the priorities of the scientific community. Although two dimensional (2D) materials (MoS2 etc.) have shown potential for NO2 sensing at lower temperatures, but these have poor desorption kinetics. However, these limitations posed by slow desorption can be overcome, if a material in the form of a p-n junction can be suitably employed. In this work, ~150 nm thick SnSe2 thin film has been deposited by thermally evaporating in-house made SnSe2 powder. The film has been studied for its morphological, structural and gas sensing applications. The morphology of the film showed that the film consists of interconnected nanostructures. Detailed Raman studies further revealed that SnSe2 film had 31% SnSe. The SnSe-SnSe2 nanostructured sensor showed a response of ~112% towards 5 ppm NO2 at room temperature (30 °C). The response and recovery times were ~15 seconds and 10 seconds, respectively. Limit of detection for NO2 was in sub-parts per million (sub-ppm) range. The device demonstrated a better response towards NO2 compared to NH3, CH4, and H2. The mechanism of room temperature fast response, recovery and selective detection of NO2 independent of humidity conditions has been discussed based on physisorption, charge transfer, and formation of SnSe-SnSe2 (p-n) nano-junctions. Depositing a nanostructured film consisting of nano-junctions using an industrially viable thermal evaporation technique for sensing a very low concentration of NO2 is the novelty of this work.


2020 ◽  
Vol 1 (1) ◽  
pp. 98-114
Author(s):  
Hongping Liang ◽  
Huiyun Hu ◽  
Jianqiang Wang ◽  
Hao Li ◽  
Nicolaas Frans de Rooij ◽  
...  

Gas sensing materials essentially dominate the performances of the gas sensors which are widely applied in environmental monitoring, industrial production and medical diagnosis. However, most of the traditional gas sensing materials show excellent performances only at high operating temperatures, which are high energy consumptive and have potential issues in terms of reliability and safety of the sensors. Therefore, the development of Room Temperature (RT) gas sensing materials becomes a research hotspot in this field. In recent years, graphene-based materials have been studied as a class of promising RT gas sensing materials because graphene has a unique twodimensional (2D) structure with high electron mobility and superior feasibility of assembling with other “guest components” (mainly small organic molecules, macromolecules and nanoparticles). More interestingly, its electrical properties become even more sensitive toward gas molecules at RT after surface modification. In this review, we have summarized the recently reported graphenebased RT gas sensing materials for the detection of NO<sub>2</sub>, H<sub>2</sub>S, NH<sub>3</sub>, CO<sub>2</sub>, CO, SO<sub>2</sub>, Volatile Organic Compounds (VOCs) (i.e. formaldehyde, acetone, toluene, ethanol), as well as Liquefied Petroleum Gas (LPG) and highlighted the latest researches with respect to supramolecular modification of graphene for gas sensing. The corresponding structural features and gas sensing mechanisms of the graphene-based gas sensors have also been generalized.


Nano Research ◽  
2021 ◽  
Author(s):  
Luis Antonio Panes-Ruiz ◽  
Leif Riemenschneider ◽  
Mohamad Moner Al Chawa ◽  
Markus Löffler ◽  
Bernd Rellinghaus ◽  
...  

AbstractWe demonstrate the selective detection of hydrogen sulfide at breath concentration levels under humid airflow, using a self-validating 64-channel sensor array based on semiconducting single-walled carbon nanotubes (sc-SWCNTs). The reproducible sensor fabrication process is based on a multiplexed and controlled dielectrophoretic deposition of sc-SWCNTs. The sensing area is functionalized with gold nanoparticles to address the detection at room temperature by exploiting the affinity between gold and sulfur atoms of the gas. Sensing devices functionalized with an optimized distribution of nanoparticles show a sensitivity of 0.122%/part per billion (ppb) and a calculated limit of detection (LOD) of 3 ppb. Beyond the self-validation, our sensors show increased stability and higher response levels compared to some commercially available electrochemical sensors. The cross-sensitivity to breath gases NH3 and NO is addressed demonstrating the high selectivity to H2S. Finally, mathematical models of sensors’ electrical characteristics and sensing responses are developed to enhance the differentiation capabilities of the platform to be used in breath analysis applications.


2016 ◽  
Vol 4 (22) ◽  
pp. 8700-8706 ◽  
Author(s):  
Ye-Qing Zhang ◽  
Zhe Li ◽  
Tao Ling ◽  
Sergei A. Kulinich ◽  
Xi-Wen Du

Highly sensitive and selective detection of volatile organic compounds (VOCs) with fast response time is imperative based on safety requirements, yet often remains a challenge.


Sign in / Sign up

Export Citation Format

Share Document