scholarly journals Energy Efficient Routing Protocol in Sensor Networks Using Genetic Algorithm

Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7060
Author(s):  
Jatinkumar Patel ◽  
Hosam El-Ocla

In this paper, we examine routing protocols with the shortest path in sensor networks. In doing this, we propose a genetic algorithm (GA)-based Ad Hoc On-Demand Multipath Distance Vector routing protocol (GA-AOMDV). We utilize a fitness function that optimizes routes based on the energy consumption in their nodes. We compare this algorithm with other existing ad hoc routing protocols including LEACH-GA, GA-AODV, AODV, DSR, EPAR, EBAR_BFS. Results prove that our protocol enhances the network performance in terms of packet delivery ratio, throughput, round trip time and energy consumption. GA-AOMDV protocol achieves average gain that is 7 to 22% over other protocols. Therefore, our protocol extends the network lifetime for data communications.

2017 ◽  
Vol 26 (4) ◽  
pp. 669-682
Author(s):  
A. Rama Rao ◽  
V. Valli Kumari ◽  
Ch. Satyananda Reddy

AbstractAs the actual links in mobile ad hoc networks (MANETs) are dynamic, the feasible path generated may not exist during the transmission of multimedia data. There is a need for generating multiple paths for guaranteed transmission. The multi-path finding can be achieved through a genetic-based algorithm that faces the major challenge in quality-of-service (QoS)-aware routing. To enhance the QoS communication over the MANETs, an exponential genetic algorithm (GA)-based stable and load-aware QoS routing protocol (SLAQR) is proposed in this paper. This paper chiefly focuses on the enhancement of the GA-based routing algorithm by including exponential function in the searching process and modifying the fitness function, which incorporates QoS metrics like the node’s static resource capacity, dynamic resource availability, neighborhood quality, and link quality. The originality of the proposed protocol comes from the fact that it introduces multiple parameters into the route quality computation and integrates the exponential function into the GA. For experimental validation, the simulation of the proposed method is done and the results are compared with existing protocols such as GAQR (GA-Based QoS Routing), QMRB-AODV (QoS Mobile Routing Backbone Over Ad Hoc On-Demand Distance Vector Routing), and EISGA (Ensemble of Immigrant Strategies with Genetic Algorithm). From the outcome, we conclude that the delivery ratio, throughput, and delay of our proposed SLAQR approach have improved the GAQR approach by 58%, 56%, and 97%, respectively.


2012 ◽  
Vol 8 (4) ◽  
pp. 186146 ◽  
Author(s):  
Fan Li ◽  
Lei Zhao ◽  
Xiumei Fan ◽  
Yu Wang

Efficient data delivery in vehicular sensor networks is still a challenging research issue. Position-based routing protocols have been proven to be more suitable for dynamic vehicular networks or large-scale mobile sensor networks than traditional ad hoc routing protocols. However, position-based routing assumes that intermediate nodes can always be found to set up an end-to-end connection between the source and the destination; otherwise, it suffers from network partitions which are very common in vehicular networks and leads to poor performances. This paper addresses data delivery challenge in the possible intermittently connected vehicular sensor networks by combining position-based forwarding strategy with store-carry-forward routing scheme from delay tolerant networks. The proposed routing method makes use of vehicle driving direction to determine whether holding or forwarding the packet. Experimental results show that the proposed mechanism outperforms existing position-based solutions in terms of packet delivery ratio.


2021 ◽  
Author(s):  
R. Thiagarajan ◽  
V. Balajivijayan ◽  
R. Krishnamoorthy ◽  
I. Mohan

Abstract Underwater Wireless Sensor Network offers broad coverage of low data rate acoustic sensor networks, scalability and energy saving routing protocols. Moreover the major problem in underwater networks is energy consumption, which arises due to lower bandwidth and propagation delays. An underwater wireless sensor network frequently employs acoustic channel communications since radio signals not worked in deep water. The transmission of data packets and energy-efficient routing are constraints for the unique characteristics of underwater. The challenging issue is an efficient routing protocol for UWSNs. Routing protocols take advantage of localization sensor nodes. Many routing protocols have been proposed for sensing nodes through a localization process. Here we proposed a Novel vector-based forwarding and efficient depth-based routing protocol. The proposed novel vector-based forwarding provides robust, scalable, and energy-efficient routing. It easily transfers nodes from source to destination. It adopts the localized and distributed alternation that allows nodes to weigh transferring packets and decreases energy consumption and provides better optimal paths. Efficient depth-based routing is a stochastic model that will succeed in a high transmission loss of the acoustic channel. The simulation was used to compare the energy consumption, network lifetime in the form of depth-based routing, delivery ratio, and vector-based forwarding to prove the optimal route finding paths and data transmission propagation delay.


2021 ◽  
Author(s):  
Wang Chu-hang ◽  
Liu Xiao-li ◽  
Youjia Han ◽  
Hu Huang-shui ◽  
Wu Sha-sha

Abstract In wireless sensor networks, uniform cluster formation and optimal routing paths finding are always the two most important factors for clustering routing protocols to minimize the network energy consumption and balance the network load. In this paper, an improved genetic algorithm based annulus-sector clustering routing protocol called GACRP is proposed. In GACRP, the circular network is divided into sectors with the same size for each annulus, whose number is determined by calculating the minimum energy consumption of each annulus. Each annulus-sector forms a cluster and the best node in this annulus-sector is selected as cluster head. Moreover, an improved genetic algorithm with a novel fitness function considering energy and load balance is presented to find the optimal routing path for each CH, and an adaptive round time is calculated for maintaining the clusters. Simulation results show that GACRP can significantly improve the network energy efficiency and prolong the network lifetime as well as mitigate the hot spot problem.


2019 ◽  
Vol 8 (2) ◽  
pp. 4200-4204

Peoples in the disastrous areas under collapsed buildings or landslides need to be rescued in seventy-two hours. Ad hoc networks have been proved to be suitable for various disaster scenarios since no infrastructure needs to be deployed for communication. In this paper, various ad hoc routing protocols such as destination distance vector routing protocol, dynamic source routing protocol, ad hoc on demand routing protocol etc. are discussed and analyzed in such disaster scenario using disaster area mobility model on large size. Disaster area mobility model is more desirable in such scenario. Also these protocols are compared using various performance qualitative and quantitative metrics such as packet delivery ratio, delay, throughput, control overhead and energy etc


2022 ◽  
Vol 14 (1) ◽  
pp. 28
Author(s):  
Yelena Trofimova ◽  
Pavel Tvrdík

In wireless ad hoc networks, security and communication challenges are frequently addressed by deploying a trust mechanism. A number of approaches for evaluating trust of ad hoc network nodes have been proposed, including the one that uses neural networks. We proposed to use packet delivery ratios as input to the neural network. In this article, we present a new method, called TARA (Trust-Aware Reactive Ad Hoc routing), to incorporate node trusts into reactive ad hoc routing protocols. The novelty of the TARA method is that it does not require changes to the routing protocol itself. Instead, it influences the routing choice from outside by delaying the route request messages of untrusted nodes. The performance of the method was evaluated on the use case of sensor nodes sending data to a sink node. The experiments showed that the method improves the packet delivery ratio in the network by about 70%. Performance analysis of the TARA method provided recommendations for its application in a particular ad hoc network.


Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1835 ◽  
Author(s):  
Ruan ◽  
Huang

Since wireless sensor networks (WSNs) are powered by energy-constrained batteries, many energy-efficient routing protocols have been proposed to extend the network lifetime. However, most of the protocols do not well balance the energy consumption of the WSNs. The hotspot problem caused by unbalanced energy consumption in the WSNs reduces the network lifetime. To solve the problem, this paper proposes a PSO (Particle Swarm Optimization)-based uneven dynamic clustering multi-hop routing protocol (PUDCRP). In the PUDCRP protocol, the distribution of the clusters will change dynamically when some nodes fail. The PSO algorithm is used to determine the area where the candidate CH (cluster head) nodes are located. The adaptive clustering method based on node distribution makes the cluster distribution more reasonable, which balances the energy consumption of the network more effectively. In order to improve the energy efficiency of multi-hop transmission between the BS (Base Station) and CH nodes, we also propose a connecting line aided route construction method to determine the most appropriate next hop. Compared with UCCGRA, multi-hop EEBCDA, EEMRP, CAMP, PSO-ECHS and PSO-SD, PUDCRP prolongs the network lifetime by between 7.36% and 74.21%. The protocol significantly balances the energy consumption of the network and has better scalability for various sizes of network.


Sign in / Sign up

Export Citation Format

Share Document