scholarly journals Improved Resolution and Cost Performance of Low-Cost MEMS Seismic Sensor through Parallel Acquisition

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7970
Author(s):  
Xing-Xing Hu ◽  
Xi-Zhen Wang ◽  
Bo Chen ◽  
Cai-Hua Li ◽  
Yi-Xiang Tang ◽  
...  

In earthquake monitoring, an important aspect of the operational effect of earthquake intensity rapid reporting and earthquake early warning networks depends on the density and performance of the deployed seismic sensors. To improve the resolution of seismic sensors as much as possible while keeping costs low, in this article the use of multiple low-cost and low-resolution digital MEMS accelerometers is proposed to increase the resolution through the correlation average method. In addition, a cost-effective MEMS seismic sensor is developed. With ARM and Linux embedded computer technology, this instrument can cyclically store the continuous collected data on a built-in large-capacity SD card for approximately 12 months. With its real-time seismic data processing algorithm, this instrument is able to automatically identify seismic events and calculate ground motion parameters. Moreover, the instrument is easy to install in a variety of ground or building conditions. The results show that the RMS noise of the instrument is reduced from 0.096 cm/s2 with a single MEMS accelerometer to 0.034 cm/s2 in a bandwidth of 0.1–20 Hz by using the correlation average method of eight low-cost MEMS accelerometers. The dynamic range reaches more than 90 dB, the amplitude–frequency response of its input and output within −3 dB is DC −80 Hz, and the linearity is better than 0.47%. In the records from our instrument, earthquakes with magnitudes between M2.2 and M5.1 and distances from the epicenter shorter than 200 km have a relatively high SNR, and are more visible than they were prior to the joint averaging.

2019 ◽  
Vol 894 ◽  
pp. 1-8
Author(s):  
Khanh Duong Quang ◽  
Huong Vuong Thi ◽  
Anh Luu Van

Multi-axial mechanical systems commonly encounter the problem of vibration while attempting to drive machining systems at high speed. Many effective methods based on feed-forward and feedback control have been proposed and applied for vibration reduction. In order to design controllers all methods require the exact knowledge of system parameters: vibration frequency and damping ratio. In recent years, low-cost Micro Electro Mechanical Systems (MEMS) accelerometers have been used for many applications in industry. This paper presents the advantage of low cost MEMS accelerometer to identify vibration parameters of mechanical systems in comparison to conventional expensive devices.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 1999 ◽  
Author(s):  
Jihua Fu ◽  
Zhitao Li ◽  
Hao Meng ◽  
Jianjun Wang ◽  
Xinjian Shan

Earthquake Early Warning (EEW) was proved to be a potential means of disaster reduction. Unfortunately, the performance of the EEW system is largely determined by the density of EEW network. How to reduce the cost of sensors has become an urgent problem for building a dense EEW. A low-cost seismic sensor integrated with a Class C MEMS accelerometer was proposed in this paper. Based on minimal structure design, the sensor’s reliability was enhanced, while the costs were cut down as well. To fully reveal the performance, ten of the seismic sensors were installed and tested in Sichuan Province, southwest of China from May 2018 to February 2019. The seismic records obtained by the MNSMSs were compared with those by the traditional strong motion seismographs. The records obtained by the MNSMSs have good consistency with the data obtained by the Etnas. The MNSMSs can obtain clear seismic phases that are enough to trigger earthquake detections for EEW. By noise analysis, different channels of the same sensor and different sensors have good consistency. The tested dynamic range (over 87 dB) and useful resolution (over 14.5 bits) are completely in conformity with the designed parameters. Through real field testing, small earthquakes (M 3.1–3.6) can be detected by all three components E-W, N-S, and U-D within 50 km. In all, the low-cost seismic sensor proposed as a high-performance Class C MEMS sensor can meet the needs of dense EEW in terms of noise, dynamic range, useful resolution, reliability, and detecting capabilities.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4627
Author(s):  
Fanyang Li ◽  
Tao Yin ◽  
Haigang Yang

This paper presents an output offset minimized capacitance-to-digital interface for a MEMS accelerometer. With a gain-enhanced voltage-controlled oscillator (VCO)-based quantization loop, the interface is able to output a digital signal with improved dynamic range. For optimizing the output offset caused by nonideal factors (e.g., the bond-wire drift), a nested digital chopping feedback loop is embedded in the VCO-based quantization loop. It enables the interface to minimize the output offset without digital filtering and digital-to-analog conversion. The proposed architecture is well suited for dynamic range and offset improvements with low cost. Fabricated with a 0.18 μm Global Foundry (GF) CMOS process, the interface offers a 78 dB dynamic range with 0.4% nonlinearity from a single 2 V supply. With the input referred offset up to 1.3 pF, the offset cancellation loop keeps the DC output offset within 40 mV. The power dissipation is 6.5 mW with a bandwidth of 4 kHz.


Author(s):  
M. Bassetti ◽  
F. Braghin ◽  
F. Castelli-Dezza

In many mechanical applications, measuring accelerations along three orthogonal directions is very important. Especially in railway application a rugged, easy-to-configure and low-noise device could be useful to measure the dynamics of the train. Moreover, freight or passenger trains behave very differently and for homologation purposes accelerometers have to be placed both on the axel-boxes, on the bogies and on the carbody. Therefore, accelerometers with different scales along X,Y and Z axes are required. The present paper presents the design, calibration and test on a freight train of new low cost MEMS accelerometers having sensibility that can be interactively adjusted between ±2g, ±16g and ±40g independently over the three axes. The output of these accelerometers can be set either to digital or to analog (with compensation of the cable length). In the paper the design of the nodes both from the electronic and mechanical points of view is presented. The results of the calibration and of the experimentation are also shown.


Proceedings ◽  
2019 ◽  
Vol 42 (1) ◽  
pp. 66
Author(s):  
Karl Schiewaldt ◽  
Guilherme Lucas ◽  
Marco Rocha ◽  
Claudio Fraga ◽  
Andre Andreoli

In recent years, the advancement of the microelectronics industry has allowed for a major expansion in the development of sensor-based equipment and applications, driven primarily by the cost reduction of micro-electro-mechanical systems (MEMS) devices. Currently, using this type of component, it is feasible to develop cost-effective systems aimed at early detection of failures in electrical machines and, in special cases, three-phase induction motors (TIM). These devices, coupled with predictive maintenance records, can prevent unexpected shutdowns due to malfunctions and signal the need for actions to extend the life cycle of the equipment. This is a relevant topic considering that the industrial sector is increasingly seeking for solutions based on non-destructive techniques (NDT) for preventive and predictive fault diagnosis. In this scenario, the objective of this work is to evaluate the application of a low-cost MEMS accelerometer to identify insulation failures in stator windings through vibration analysis. For this purpose, two MEMS accelerometers were coupled on either side of the frame of a TIM. Then, vibration signals were acquired for different types and levels of insulation failures. The data obtained were processed using different metrics such as root mean square (RMS), kurtosis, and skewness. The results allowed us to identify the insulation faults applied to the TIM, confirming the feasibility of applying the low-cost MEMS accelerometer in the vibration analysis for fault diagnosis.


2019 ◽  
Vol 12 (06) ◽  
pp. 1950016 ◽  
Author(s):  
Qiuping Shang ◽  
Peng Zhang ◽  
Huijie Li ◽  
Rui Liu ◽  
Chunsun Zhang

In this work, a solely gravity and capillary force-driven flow chemiluminescence (GCF-CL) paper-based microfluidic device has been proved for the first time as a new platform for inexpensive, usable, minimally-instrumented dynamic chemiluminescence (CL) detection of chromium (III) [Cr(III)], where an appropriate angle of inclination between the loading and detection zones on the paper produces a rapid flow of CL prompt solution through the paper channel. For this study, we use a cost-effective paper device that is manufactured by a simple wax screen-printing method, while the signal generated from the Cr(III)-catalyzed oxidation of luminol by H2O2is recorded by a low-cost and luggable CCD camera. A series of GCF-CL affecting factors have been evaluated carefully. At optimal conditions, two linear relationships between GCF-CL intensities and the logarithms of Cr(III) concentrations are obtained in the concentration ranges of 0.025–35[Formula: see text]mg/L and 50–500[Formula: see text]mg/L separately, with the detection limit of 0.0245[Formula: see text]mg/L for a less than 30[Formula: see text]s assay, and relative standard deviations (RSDs) of 3.8%, 4.5% and 2.3% for 0.75, 5 and 50[Formula: see text]mg/L of Cr(III) ([Formula: see text]). The above results indicate that the GCF-CL paper-based microfluidic device possesses a receivable sensitivity, dynamic range, storage stability and reproducibility. Finally, the developed GCF-CL is utilized for Cr(III) detection in real water samples.


2012 ◽  
Vol 226-228 ◽  
pp. 2107-2110
Author(s):  
Hu Sheng Guo ◽  
Bin Yan ◽  
Zhi Dong Wu

The performance of the Ocean Bottom Seismometers (OBS) in seismic wave field measurement is vital to seismic exploration. In order to improve the performance of OBS, we have been developed a new Ocean Bottom Seismometer based 3-component MEMS accelerometer sensors. In order to sample seismic data synchronously, we have been designed multichannel A/D unit under the control of MSP430.We also are involved in a handle and sophisticated equipment allows to storage sampling data in the SD card module. The system based MEMS sensor are compared with conventional analog moving coil geophones, the result shows that the new measurement system with the advantage of high dynamic range, low noise and anti-jamming that suit for the high resolution seismicity information. The paper show that the new digital OBS using MEMS accelerometer will replace the tradition OBS in oil exploration, scientific research and seabed surveys.


2014 ◽  
Vol 40 ◽  
pp. 1-9 ◽  
Author(s):  
A. D'Alessandro ◽  
D. Luzio ◽  
G. D'Anna

Abstract. In this paper, we introduce a project for the realization of the first European real-time urban seismic network based on Micro Electro-Mechanical Systems (MEMS) technology. MEMS accelerometers are a highly enabling technology, and nowadays, the sensitivity and the dynamic range of these sensors are such as to allow the recording of earthquakes of moderate magnitude even at a distance of several tens of kilometers. Moreover, thanks to their low cost and smaller size, MEMS accelerometers can be easily installed in urban areas in order to achieve an urban seismic network constituted by high density of observation points. The network is being implemented in the Acireale Municipality (Sicily, Italy), an area among those with the highest hazard, vulnerability and exposure to the earthquake of the Italian territory. The main objective of the implemented urban network will be to achieve an effective system for post-earthquake rapid disaster assessment. The earthquake recorded, also that with moderate magnitude will be used for the effective seismic microzonation of the area covered by the network. The implemented system will be also used to realize a site-specific earthquakes early warning system.


Author(s):  
A. G. Jackson ◽  
M. Rowe

Diffraction intensities from intermetallic compounds are, in the kinematic approximation, proportional to the scattering amplitude from the element doing the scattering. More detailed calculations have shown that site symmetry and occupation by various atom species also affects the intensity in a diffracted beam. [1] Hence, by measuring the intensities of beams, or their ratios, the occupancy can be estimated. Measurement of the intensity values also allows structure calculations to be made to determine the spatial distribution of the potentials doing the scattering. Thermal effects are also present as a background contribution. Inelastic effects such as loss or absorption/excitation complicate the intensity behavior, and dynamical theory is required to estimate the intensity value.The dynamic range of currents in diffracted beams can be 104or 105:1. Hence, detection of such information requires a means for collecting the intensity over a signal-to-noise range beyond that obtainable with a single film plate, which has a S/N of about 103:1. Although such a collection system is not available currently, a simple system consisting of instrumentation on an existing STEM can be used as a proof of concept which has a S/N of about 255:1, limited by the 8 bit pixel attributes used in the electronics. Use of 24 bit pixel attributes would easily allowthe desired noise range to be attained in the processing instrumentation. The S/N of the scintillator used by the photoelectron sensor is about 106 to 1, well beyond the S/N goal. The trade-off that must be made is the time for acquiring the signal, since the pattern can be obtained in seconds using film plates, compared to 10 to 20 minutes for a pattern to be acquired using the digital scan. Parallel acquisition would, of course, speed up this process immensely.


Author(s):  
Tanwi Singh ◽  
Anshuman Sinha

The major risk associated with low platelet count in pregnancy is the increased risk of bleeding during the childbirth or post that. There is an increased blood supply to the uterus during pregnancy and the surgical procedure requires cutting of major blood vessels. Women with thrombocytopenia are at increased risk of losing excessive blood. The risk is more in case of caesarean delivery as compared to vaginal delivery. Hence based on above findings the present study was planned for Assessment of the Platelet Count in the Pregnant Women in IGIMS, Patna, Bihar. The present study was planned in Department of Pathology, Indira Gandhi Institute of Medical Science, Patna, Bihar, India. The present study was planned from duration of January 2019 to June 2019. In the present study 200 pregnant females samples received for the platelet estimation were enrolled in the present study. Clinically platelet indices can be a useful screening test for early identification of preeclampsia and eclampsia. Also platelet indices can assess the prognosis of this disease in pregnant women and can be used as an effective prognostic marker because it correlates with severity of the disease. Platelet count is a simple, low cost, and rapid routine screening test. Hence the data generated from the present study concludes that platelet count can be used as a simple and cost effective tool to monitor the progression of preeclampsia, thereby preventing complications to develop during the gestational period. Keywords: Platelet Count, Pregnant Women, IGIMS, Patna, Bihar, etc.


Sign in / Sign up

Export Citation Format

Share Document