scholarly journals Experimental Detection and Measurement of Crack-Type Damage Features in Composite Thin-Wall Beams Using Modal Analysis

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8102
Author(s):  
Josué Pacheco-Chérrez ◽  
Diego Cárdenas ◽  
Oliver Probst

An experimental proof-of-concept for damage detection in composite beams using modal analysis has been conducted. The purpose was to demonstrate that damage features can be detected, located, and measured on the surface of a relatively complex thin-wall beam made from composite material. (1) Background: previous work has been limited to the study of simple geometries and materials. (2) Methods: damage detection in the work is based on the accurate measurement of mode shapes and an appropriate design of the detection mesh. Both a method requiring information about the healthy structure and a baseline-free method have been implemented. (3) Results: short crack-type damage features, both longitudinal and transverse, were detected reliably, and the true length of the crack can be estimated from the damage signal. Simultaneous detection of two cracks on the same sample is also possible. (4) This work demonstrates the feasibility of automated damage detection in composite beams using sensor arrays.

2006 ◽  
Vol 306-308 ◽  
pp. 757-762 ◽  
Author(s):  
Hui Wen Hu ◽  
Bor Tsuen Wang ◽  
Cheng Hsin Lee

This paper presents a damage detection of surface crack in composite laminate. Carbon/epoxy composite AS4/PEEK was used to fabricate a quasi-isotropic laminate [0/90/±45]2s. Surface crack was created by using laser cutting machine. Modal analysis was performed to obtain the mode shapes of the laminate before and after damage. The mode shapes were then adopted to compute the strain energy, which was used to define a damage index. Consequently, the damage index successfully predicted the location of surface crack in the laminate. Differential quadrature method (DQM) was introduced to calculate the partial differential terms in strain energy formula.


Author(s):  
K. Oruganti ◽  
M. Mehdizadeh ◽  
S. John ◽  
I. Herszberg

Composite materials are supplanting conventional metals in aerospace, automotive, civil and marine industries in modern times. However, despite these advantageous properties, they are prone to delamination or matrix cracking. Thus, necessitating the early detection of the crack or flaw before it initiates into a serious defect. An offline approach was commonly used where in the parts examined away from service/operation. This not only consumed a lot of time but risked damage to the part during operation and handling. A detailed understanding of the various proven methods and techniques and their applicability in the analysis of vibration signatures obtained from damaged structures under dynamic conditions is essential to develop a reliable Structural Health Monitoring System (SHMS). This paper includes Vibration based damage detection testing on Carbon/Epoxy composite beams. Such composites are commonly used in the aerospace and marine industry. This material type is gaining acceptance not only in the aerospace industry but also in the automotive and construction industries. The paper reports the processing of the vibration signatures from healthy and damaged composite beams upon excitation and analysis of the mode shapes acquired. The study comprises of testing carbon/epoxy composite beams with various embedded delaminations with a mechanical actuator and a scanning laser vibrometer (SLV) as a sensor for recording the frequency response and analysing the acquired signatures based on Displacement and Curvature Mode Shapes.


2019 ◽  
Vol 3 (3) ◽  
pp. 452 ◽  
Author(s):  
Du Dinh-Cong ◽  
Linh Vo-Van ◽  
Dung Nguyen-Quoc ◽  
Trung Nguyen-Thoi

Modal kinetic energy (MKE) feature has been mostly employed for optimal sensor layout strategies; nevertheless, little attention is paid to use the feature to the field of structural damage detection. The article presents the extensive applicability of MKE change ratio (MKECR), a good damage sensitive parameter, to damage localization and quantification of laminated composite beams. The formulation of the parameter is based on the closed-form of element MKE sensitivity. The performance of the offered damage detection method is numerically verified by a clamped-clamped composite beam and a two-span continuous composite beam with different hypothetical damage scenarios. The influence of incomplete mode shapes, various noise levels as well as damage magnitudes on damage prediction results are also investigated. The obtained results from these numerical examples indicate that the offered method reliably localize the actually damaged elements and approximately estimate their severities, even under incomplete measurements at a high noise level.This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited. 


2017 ◽  
Vol 13 ◽  
pp. 148
Author(s):  
Michal Venglar ◽  
Milan Sokol ◽  
Monika Marfoldi

The paper deals with a preparation of a complex FEM model for a local damage detection. The initial verified and validated three-dimensional FEM model of a steel truss bridge in laboratory is revised step-by-step to achieve the accurate model according to the experimental model. The emphasis is on modelling of the joints with 4 rivets and modelling of correct boundary conditions, as well as mass parameters and cross-section dimensions.A modal analysis of the structure is performed in FEM software. Many experimental measurements were made to correctly revise the FEM model. The calculated natural frequencies are compared with the measured ones. In addition, mode-shapes from the calculation are validated with the measured mode-shapes. The difference between the prepared FEM model and the measured specimen is small enough after a few steps of tuning. The verified, validated and revised numerical model can be used in future for a local damage detection.


2015 ◽  
Vol 39 (1) ◽  
pp. 145-149 ◽  
Author(s):  
Ewa B. Skrodzka ◽  
Bogumił B.J. Linde ◽  
Antoni Krupa

Abstract Experimental modal analysis of a violin with three different tensions of a bass bar has been performed. The bass bar tension is the only intentionally introduced modification of the instrument. The aim of the study was to find differences and similarities between top plate modal parameters determined by a bass bar perfectly fitting the shape of the top plate, the bass bar with a tension usually applied by luthiers (normal), and the tension higher than the normal value. In the modal analysis four signature modes are taken into account. Bass bar tension does not change the sequence of mode shapes. Changes in modal damping are insignificant. An increase in bass bar tension causes an increase in modal frequencies A0 and B(1+) and does not change the frequencies of modes CBR and B(1-).


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 311
Author(s):  
Chan-Jung Kim

Previous studies have demonstrated the sensitivity of the dynamic behavior of carbon-fiber-reinforced plastic (CFRP) material over the carbon fiber direction by performing uniaxial excitation tests on a simple specimen. However, the variations in modal parameters (damping coefficient and resonance frequency) over the direction of carbon fiber have been partially explained in previous studies because all modal parameters have only been calculated using the representative summed frequency response function without modal analysis. In this study, the dynamic behavior of CFRP specimens was identified from experimental modal analysis and compared five CFRP specimens (carbon fiber direction: 0°, 30°, 45°, 60°, and 90°) and an isotropic SCS13A specimen using the modal assurance criterion. The first four modes were derived from the SCS13A specimen; they were used as reference modes after verifying with the analysis results from a finite element model. Most of the four mode shapes were found in all CFRP specimens, and the similarity increased when the carbon fiber direction was more than 45°. The anisotropic nature was dominant in three cases of carbon fiber, from 0° to 45°, and the most sensitive case was found in Specimen #3.


2021 ◽  
pp. 096739112110033
Author(s):  
TG Sreekanth ◽  
M Senthilkumar ◽  
S Manikanta Reddy

Delamination is definitely an important topic in the area of composite structures as it progressively worsens the mechanical performance of fiber-reinforced polymer composite structures in its service period. The detection and severity analysis of delaminations in engineering areas like the aviation industry is vital for safety and economic considerations. The existence of delaminations varies the vibration characteristics such as natural frequencies, mode shapes, etc. of composites and hence this indication can be effectively used for locating and quantifying the delaminations. The changes in vibration characteristics are considered as inputs for the inverse problem to determine the location and size of delaminations. In this paper Artificial Neural Network (ANN) is used for delamination evaluationof glass fiber-reinforced composite beams using natural frequency as typical vibration parameter. The Finite Element Analysis is used for generating the required dataset for ANN. The frequency-based delamination prediction technique is validated by finite element models and experimental modal analysis. The results indicate that the ANN-based back propagation algorithm can predict the location and size of delaminations in composites with good accuracy for numerical natural frequency data but the accuracy is comparitivelyless for experimental natural frequency data.


2011 ◽  
Vol 675-677 ◽  
pp. 477-480
Author(s):  
Dong Wei Shu

In this work analytical solutions are developed to study the free vibration of composite beams under axial loading. The beam with a single delamination is modeled as four interconnected Euler-Bernoulli beams using the delamination as their boundary. The continuity and the equilibrium conditions are satisfied between the adjoining beams. The studies show that the sizes and the locations of the delaminations significantly influence the natural frequencies and mode shapes of the beam. A monotonic relation between the natural frequency and the axial load is predicted.


Sign in / Sign up

Export Citation Format

Share Document