scholarly journals Evaluation of Ride Comfort in a Railway Passenger Car Depending on a Change of Suspension Parameters

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8138
Author(s):  
Ján Dižo ◽  
Miroslav Blatnický ◽  
Juraj Gerlici ◽  
Bohuš Leitner ◽  
Rafał Melnik ◽  
...  

Ride comfort for passengers remains a pressing topic. The level of comfort in a vehicle can influences passengers’ preferences for a particular means of transport. The article aims to evaluate the influence of changes in suspension parameters on the ride comfort for passengers. The theoretical background includes a description of the applied method for a creating the virtual model of an investigated vehicle as well as the method of evaluating the ride comfort. The ride comfort of the vehicle is assessed based on the standard method, which involves calculating the mean comfort method, i.e., ride comfort index NMV in chosen points on a body floor. The NMV ride comfort index (Mean Comfort Standard Method) requires the input of acceleration signals in three directions. The rest of the article offers the results of simulation computations. The stiffness–damping parameters of the primary and secondary suspension systems were changed at three levels and the vehicle was run on the real track section. The ride index NMV was calculated for all three modifications of the suspension system in the chosen fifteen points of the body floor. It was found that lower values in the stiffness of the secondary suspension system lead to lower levels of ride comfort in the investigated railway passenger car; however, lower values in the stiffness–damping parameters of the primary suspension system did not decrease the levels of ride comfort as significantly.

Author(s):  
H. Farahpour ◽  
D. Younesian ◽  
E. Esmailzadeh

Ride comfort of high-speed trains is studied using Sperling's comfort index. Dynamic model is developed in the frequency domain and the power spectral density (PSD) of the body acceleration is obtained for four classes of tracks. The obtained acceleration PSD is then filtered using Sperling's filter. The effects of the rail roughness and train speed on the comfort indicators are investigated. A parametric study is also carried out to evaluate the effects of the primary and secondary suspension systems on the comfort indicators.


2019 ◽  
Vol 10 (1) ◽  
pp. 20-29 ◽  
Author(s):  
Ján Dižo ◽  
Miroslav Blatnický ◽  
Stasys Steišūnas ◽  
Gediminas Vaičiūnas

Abstract This article deals with computer analyses of output quantities of a railway vehicle depending on changing of parameters of suspension system. A passenger car was chosen for dynamic analyses. An analysed passenger railway vehicle uses two stage suspension system composed of coil springs and hydraulic dampers. Stiffness of coil springs of primary and secondary suspensions were defined for two states and its influence on output values in terms of quality and quantity was evaluated. As output variables, values of forces in a wheel/rail contact and accelerations in several locations on a wagon body floor were chosen. Values of forces in a wheel/rail contact indicate dynamic response of a railway vehicle running in terms of running safety and values of accelerations serve as important input for evaluation of passenger ride comfort.


Author(s):  
Sunil Kumar Sharma ◽  
Anil Kumar

In a railway vehicle, vibrations are generated due to the interaction between wheel and track. To evaluate the effect of vibrations on the ride quality and comfort of a passenger vehicle, the Sperling's ride index method is frequently adopted. This paper focuses on the feasibility of improving the ride quality and comfort of railway vehicles using semiactive secondary suspension based on magnetorheological fluid dampers. Equations of vertical, pitch and roll motions of car body and bogies are developed for an existing rail vehicle. Moreover, nonlinear stiffness and damping functions of passive suspension system are extracted from experimental data. In view of improvement in the ride quality and comfort of the rail vehicle, a magnetorheological damper is integrated in the secondary vertical suspension system. Parameters of the magnetorheological damper depend on current, amplitude and frequency of excitations. Three semi-active suspension strategies with magnetorheological damper are analysed at different running speeds and for periodic track irregularity. The performance indices calculated at different semi-active strategies are juxtaposed with the nonlinear passive suspension system. Simulation results establish that magnetorheological damper strategies in the secondary suspension system of railway vehicles reduce the vertical vibrations to a great extent compared to the existing passive system. Moreover, they lead to improved ride quality and passenger comfort.


2014 ◽  
Vol 556-562 ◽  
pp. 1435-1440 ◽  
Author(s):  
Deng Feng Wang ◽  
Tian Ze Shi ◽  
Zhao Xiang Deng ◽  
Hong Liang Dong

A multi-body dynamic rigid-flexible coupling model of an in-wheel motor vehicle is built. This vehicle is based on a particular class-A car. An overall investigation of the influence of unsprung mass on vehicle ride comfort is conducted. With the increment of unsprung mass, overall vehicle ride comfort is decreased. The degradation of wheel dynamic load performance is most obvious. Suspension parameters are optimized based on the multi-body dynamic model of the vehicle and Response Surface Method. The suspension deflection and wheel dynamic load of the vehicle using optimized suspension parameters are improved significantly, while the body vertical acceleration increased slightly.


Author(s):  
P.P.D. Rao ◽  
S. Palli ◽  
R.C. Sharma

Conventional vehicle suspension systems, which are passive in nature consists of springs with constant stiffness and dampers with constant damping coefficient. These suspension systems cannot meet the characteristics such as ride comfort, road handing and suspension deflection during abnormal road conditions simultaneously. Active and semi-active suspension systems are the solutions to achieve the desired suspension characteristics. Since, active system is bulky and requires high energy for working, a semi-active suspension system is considered in the present work to analyze vehicle traversing over various road profiles for ride comfort. Mathematical model of a 7 DoF passenger car is formulated using Newton’s method. A semi-active suspension system with skyhook linear control strategy avoids the road excitations at resonant frequencies by shifting the natural frequencies of the model by varying damping coefficients based on the vehicle response for different road conditions where the excitations could be harmonic, transient and random. Modal analysis is carried out to identify the un-damped natural frequencies and mode shapes for different values of damping. The above analyses are carried out through analytical and numerical methods using MATLAB and ANSYS software respectively and the results obtained from both are in good agreement.


2017 ◽  
Vol 67 (1) ◽  
pp. 23-28
Author(s):  
Ján Danko ◽  
Tomáš Milesich ◽  
Jozef Bucha

Abstract The paper deals with the modelling of a passenger car seat suspension system. Currently, vehicle safety and ride comfort are one of the most important factors of vehicle design. This article analyses a mathematical model of the passenger car seat suspension system. Furthermore, experimental measurements of the passenger car seat suspension system are performed. Utilizing the experimental data, model parameters are identified. From the chosen mathematical model a simulation model in constructed in Matlab is designed. In this simulation, the force-velocity and force-displacement characteristics of the passenger car seat suspension system are described. Finally, evaluation of simulated damper characteristics with the characteristics form measured data are performed.


2008 ◽  
Vol 15 (5) ◽  
pp. 493-503 ◽  
Author(s):  
S. Hossein Sadati ◽  
Salar Malekzadeh ◽  
Masood Ghasemi

In this paper, an 8-DOF model including driver seat dynamics, subjected to random road disturbances is used in order to investigate the advantage of active over conventional passive suspension system. Force actuators are mounted parallel to the body suspensions and the driver seat suspension. An optimal control approach is taken in the active suspension used in the vehicle. The performance index for the optimal control design is a quantification of both ride comfort and road handling. To simulate the real road profile condition, stochastic inputs are applied. Due to practical limitations, not all the states of the system required for the state-feedback controller are measurable, and hence must be estimated with an observer. In this paper, to have the best estimation, an optimal Kalman observer is used. The simulation results indicate that an optimal observer-based controller causes both excellent ride comfort and road handling characteristics.


Author(s):  
Stefano Dominoni ◽  
Massimiliano Gobbi ◽  
Giampiero Mastinu ◽  
Giorgio Previati

The paper is focused on the assessment of the ride comfort of that farm tractors. The problem of assessing the ride comfort is crucial due to the fact that operators spend part of their own lives on board of such machines, exposed to whole body vibrations potentially harmful for their health. The paper deals with the experimental measurement of the relevant vibration occurring at the tractor body, at the cabin and at the seat. The focus is on which accelerations are actually relevant and have to be taken into account. A number of farm tractors have been instrumented and run under monitored conditions. The test track was equipped with a number of cleats able to force at resonance the cabin and the seat. The six motions of the tractor body and the six motions of the cabin were measured. The motion of the seat was measured. The signals have been processed in the time domain. Some interesting occurrence have been highlighted referring to the amplification that a badly regulated seat can provide under certain circumstances. The comfort index was computed according with ISO 2631 and other standards. The acceleration of the seated subject was described at different positions on the body. It turned out that the acceleration of the head was particularly relevant for establishing a comparison among different tractors. Synthetic indices have been derived from the measured data able to correlate the subjective drivers’ feeling with the measured level of vibration. The conclusion is that for a proper comparison of the ride performance of different farm tractors a huge number of measurements are needed. There is no possibility to record only the vertical accelerations to assess the ride comfort of farm tractors.


Author(s):  
Ruihua Li

The hub motor significantly increases the unsprung mass of electric in-wheel vehicles, which deteriorates the ride comfort and safety of vehicles and which can be effectively improved by optimizing the main suspension parameters of vehicles reasonably, so a multi-objective optimization method of main suspension parameters based on adaptive particle swarm algorithm is proposed and the dynamic model of a half in-wheel electric vehicle is established. Taking the stiffness coefficient of the suspension damping spring and damping coefficient of the damper as independent variables, the vertical acceleration of the body, the pitch acceleration and the vertical impact force of the hub motor as optimization variables, and the dynamic deflection of the suspension and the dynamic load of the wheel as constraint variables, the multi-objective optimization function is constructed, and the parameters are simulated and optimized under the compound pavement. The simulation results show that the vertical acceleration and pitch acceleration are reduced by 20.2% and 18.4% respectively, the vertical impact force of the front hub motor is reduced by 3.7%, and the ride comfort and safety are significantly improved.


Author(s):  
Smitirupa Pradhan ◽  
Arun Kumar Samantaray ◽  
Ranjan Bhattarcharyya

Ride comfort is the level of comfort sensed by the passengers when they are continuously exposed to the vibration and noise. To diminish the vibration level, air springs are used in the secondary suspension system instead of coil springs, especially in the modern railway vehicles. This article focuses on the modeling of Nishimura air spring with non-linear damper and human biodynamic (bio-mechanical) model by using multi-energy domain modeling approach, bond graph. The car body of the railway vehicle is treated as a beam and the first five modes including three flexible modes are considered in the model. We use International Organization for Standardization 2631 for evaluating ride comfort for different durations of the travel time (1 h, 2.5 h, 4 h and 8 h) on flexible and irregular tracks.


Sign in / Sign up

Export Citation Format

Share Document