scholarly journals Reagentless Sensing of Vancomycin Using an Indium Tin Oxide Electrode Grafted with Molecularly Imprinted Polymer including Ferrocenyl Group

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8338
Author(s):  
Haruto Eguchi ◽  
Akihiko Hatano ◽  
Yasuo Yoshimi

Vancomycin (VCM) is a first-line antimicrobial agent against methicillin-resistant Staphylococcus aureus, a cause of nosocomial infections. Therapeutic drug monitoring is strongly recommended for VCM-based chemotherapy. The authors attempted to develop a simple VCM sensor based on molecularly imprinted polymer (MIP), which can be used with simple operations. Methacrylic acid (MAA), acrylamide, methylenebisacrylamide, and allylamine carboxypropionate-3-ferrocene (ACPF) were copolymerized in the presence of VCM and grafted from the surface of indium-tin oxide (ITO) to obtain MIP-coated electrodes. The MIP-grafted ITO electrode was used for differential pulse voltammetry (DPV) measurements in a buffer solution containing VCM or whole bovine blood. The obtained current depends on the VCM concentration with high linearity. The dynamic range covered the therapeutic range (20–40 μg/mL) of the VCM but was almost insensitive to teicoplanin, which has a similar structure to VCM. The ITO electrodes grafted by the same procedure except for omitting either VCM or APCF were not sensitive to VCM. The sensitivity of the MIP electrodes to VCM in whole blood and buffered saline, but the background current in blood was higher than that in saline. This high background current was also seen in the deproteinized plasma. Thus, the current is probably originated from the oxidation of low molecular weight reducing agents in the blood. The MIP-grafted ITO electrode using ACPF as a functional monomer would be a promising highly selective sensor for real-time monitoring of VCM with proper correction of the background current.

RSC Advances ◽  
2015 ◽  
Vol 5 (12) ◽  
pp. 9154-9166 ◽  
Author(s):  
Sina Farzaneh ◽  
Ebadullah Asadi ◽  
Majid Abdouss ◽  
Azam Barghi-Lish ◽  
Saman Azodi-Deilami ◽  
...  

The aim of this study was to prepare efficient imprinted polymer nanoparticles from an olanzapine template for the controlled release of olanzapine as a therapeutic drug for CNS diseases.


2019 ◽  
Vol 58 (3) ◽  
pp. 274-279
Author(s):  
Mojtaba Soleimani ◽  
Ameneh Porgham Daryasari ◽  
Parisa Joshani

Abstract In this work, the molecularly imprinted polymer nanoparticles (MIP-NPs) for the selective determination of fluvoxamine have been described. The polymer nanoparticles were synthesized by the polymerization of methacrylic acid as a functional monomer, ethylene glycol dimethacrylate as a cross-linker, 2,2-azobisisobutyronitrile as an initiator and fluvoxamine as a template molecule. The MIP-NPs were characterized using techniques that included Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). Imprinted fluvoxamine molecules were removed from the polymeric structure using acetonitrile in methanol (2:8; v/v) as the eluting solvent. The linear dynamic range for fluvoxamine was 10–1200 μg L−1. The developed method was successfully applied to the extraction of fluvoxamine in complex biological samples.


Author(s):  
Abigail Pereira ◽  
Priscila Cervini ◽  
Victor Rivera ◽  
Éder Cavalheiro

A molecularly imprinted polymer (MIP) was prepared using the anti-inflammatory diclofenac (DCF) as a template. A non-imprinted polymer (NIP) was also prepared as a control. These MIP and NIP were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET), revealing a higher porosity in the first. Then both were used in the modification of graphite-polyurethane composites electrodes (GPUE). Differential pulse anodic stripping voltammetry was used for DCF determination at GPUE-MIP-DCF containing 2.5% (m/m) of the modifier in perchloric acid, pH = 2.0, after previously optimized conditions such as 300 s of accumulation time, +0.2 V accumulation potential (vs. SCE (saturated calomel electrode)), 50 mV pulse amplitude and 10 mV s–1 scan rate. A linear dynamic range from 0.010 to 0.20 μmol L–1 and a limit of detection (LOD) of 0.99 nmol L–1 were found, using GPUE-2.5-MIP-DCF. DCF was determined in commercial pharmaceutical formulations and in synthetic urine samples, with recoveries between 101 and 102% (n = 3) and 101% (n = 3), respectively. The results agreed with the reference high-performance liquid chromatography (HPLC) within 95% confidence level, according to Student’s t-test. Interference from meclofenamic and mefenamic acids, which are structurally similar to DCF, was also evaluated. Interferences could not be totally avoided, but MIPs presented a considerable ability in discriminating the voltammetric response for DFC, despite the close structural similarity with the interferents.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
G. B. V. S. Lakshmi ◽  
Amit K. Yadav ◽  
Neha Mehlawat ◽  
Rekha Jalandra ◽  
Pratima R. Solanki ◽  
...  

AbstractTrimethylamine N-oxide (TMAO), a microbiota-derived metabolite has been implicated in human health and disease. Its early detection in body fluids has been presumed to be significant in understanding the pathogenesis and treatment of many diseases. Hence, the development of reliable and rapid technologies for TMAO detection may augment our understanding of pathogenesis and diagnosis of diseases that TMAO has implicated. The present work is the first report on the development of a molecularly imprinted polymer (MIP) based electrochemical sensor for sensitive and selective detection of TMAO in body fluids. The MIP developed was based on the polypyrrole (PPy), which was synthesized via chemical oxidation polymerization method, with and without the presence of TMAO. The MIP, NIP and the non-sonicated polymer (PPy-TMAO) were separately deposited electrophoretically onto the hydrolyzed indium tin oxide (ITO) coated glasses. The chemical, morphological, and electrochemical behavior of MIP, non-imprinted polymer (NIP), and PPy-TMAO were characterized using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and electrochemical techniques. The detection response was recorded using differential pulse voltammetry (DPV), which revealed a decrease in the peak current with the increase in concentration of TMAO. The MIP sensor showed a dynamic detection range of 1–15 ppm with a sensitivity of 2.47 µA mL ppm−1 cm−2. The developed sensor is easy to construct and operate and is also highly selective to detect TMAO in body fluids such as urine. The present research provides a basis for innovative strategies to develop sensors based on MIP to detect other metabolites derived from gut microbiota that are implicated in human health and diseases.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4304
Author(s):  
Tetyana Sergeyeva ◽  
Daria Yarynka ◽  
Larysa Dubey ◽  
Igor Dubey ◽  
Elena Piletska ◽  
...  

The combination of the generic mobile technology and inherent stability, versatility and cost-effectiveness of the synthetic receptors allows producing optical sensors for potentially any analyte of interest, and, therefore, to qualify as a platform technology for a fast routine analysis of a large number of contaminated samples. To support this statement, we present here a novel miniature sensor based on a combination of molecularly imprinted polymer (MIP) membranes and a smartphone, which could be used for the point-of-care detection of an important food contaminant, oestrogen-like toxin zearalenone associated with Fusarium contamination of cereals. The detection is based on registration of natural fluorescence of zearalenone using a digital smartphone camera after it binds to the sensor recognition element. The recorded image is further processed using a mobile application. It shows here a first example of the zearalenone-specific MIP membranes synthesised in situ using “dummy template”-based approach with cyclododecyl 2, 4-dihydroxybenzoate as the template and 1-allylpiperazine as a functional monomer. The novel smartphone sensor system based on optimized MIP membranes provides zearalenone detection in cereal samples within the range of 1–10 µg mL−1 demonstrating a detection limit of 1 µg mL−1 in a direct sensing mode. In order to reach the level of sensitivity required for practical application, a competitive sensing mode is also developed. It is based on application of a highly-fluorescent structural analogue of zearalenone (2-[(pyrene-l-carbonyl) amino]ethyl 2,4-dihydroxybenzoate) which is capable to compete with the target mycotoxin for the binding to zearalenone-selective sites in the membrane’s structure. The competitive mode increases 100 times the sensor’s sensitivity and allows detecting zearalenone at 10 ng mL−1. The linear dynamic range in this case comprised 10–100 ng mL−1. The sensor system is tested and found effective for zearalenone detection in maize, wheat and rye flour samples both spiked and naturally contaminated. The developed MIP membrane-based smartphone sensor system is an example of a novel, inexpensive tool for food quality analysis, which is portable and can be used for the “field” measurements and easily translated into the practice.


2019 ◽  
Vol 15 (3) ◽  
pp. 251-257
Author(s):  
Bahareh Sadat Yousefsani ◽  
Seyed Ahmad Mohajeri ◽  
Mohammad Moshiri ◽  
Hossein Hosseinzadeh

Background:Molecularly imprinted polymers (MIPs) are synthetic polymers that have a selective site for a given analyte, or a group of structurally related compounds, that make them ideal polymers to be used in separation processes.Objective:An optimized molecularly imprinted polymer was selected and applied for selective extraction and analysis of clozapine in rat brain tissue.Methods:A molecularly imprinted solid-phase extraction (MISPE) method was developed for preconcentration and cleanup of clozapine in rat brain samples before HPLC-UV analysis. The extraction and analytical process was calibrated in the range of 0.025-100 ppm. Clozapine recovery in this MISPE process was calculated between 99.40 and 102.96%. The limit of detection (LOD) and the limit of quantification (LOQ) of the assay were 0.003 and 0.025 ppm, respectively. Intra-day precision values for clozapine concentrations of 0.125 and 0.025 ppm were 5.30 and 3.55%, whereas inter-day precision values of these concentrations were 9.23 and 6.15%, respectively. In this study, the effect of lipid emulsion infusion in reducing the brain concentration of drug was also evaluated.Results:The data indicated that calibrated method was successfully applied for the analysis of clozapine in the real rat brain samples after administration of a toxic dose to animal. Finally, the efficacy of lipid emulsion therapy in reducing the brain tissue concentration of clozapine after toxic administration of drug was determined.Conclusion:The proposed MISPE method could be applied in the extraction and preconcentration before HPLC-UV analysis of clozapine in rat brain tissue.


Sign in / Sign up

Export Citation Format

Share Document