scholarly journals Unsupervised Event Graph Representation and Similarity Learning on Biomedical Literature

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 3
Author(s):  
Giacomo Frisoni ◽  
Gianluca Moro ◽  
Giulio Carlassare ◽  
Antonella Carbonaro

The automatic extraction of biomedical events from the scientific literature has drawn keen interest in the last several years, recognizing complex and semantically rich graphical interactions otherwise buried in texts. However, very few works revolve around learning embeddings or similarity metrics for event graphs. This gap leaves biological relations unlinked and prevents the application of machine learning techniques to promote discoveries. Taking advantage of recent deep graph kernel solutions and pre-trained language models, we propose Deep Divergence Event Graph Kernels (DDEGK), an unsupervised inductive method to map events into low-dimensional vectors, preserving their structural and semantic similarities. Unlike most other systems, DDEGK operates at a graph level and does not require task-specific labels, feature engineering, or known correspondences between nodes. To this end, our solution compares events against a small set of anchor ones, trains cross-graph attention networks for drawing pairwise alignments (bolstering interpretability), and employs transformer-based models to encode continuous attributes. Extensive experiments have been done on nine biomedical datasets. We show that our learned event representations can be effectively employed in tasks such as graph classification, clustering, and visualization, also facilitating downstream semantic textual similarity. Empirical results demonstrate that DDEGK significantly outperforms other state-of-the-art methods.

2021 ◽  
Author(s):  
Rogini Runghen ◽  
Daniel B Stouffer ◽  
Giulio Valentino Dalla Riva

Collecting network interaction data is difficult. Non-exhaustive sampling and complex hidden processes often result in an incomplete data set. Thus, identifying potentially present but unobserved interactions is crucial both in understanding the structure of large scale data, and in predicting how previously unseen elements will interact. Recent studies in network analysis have shown that accounting for metadata (such as node attributes) can improve both our understanding of how nodes interact with one another, and the accuracy of link prediction. However, the dimension of the object we need to learn to predict interactions in a network grows quickly with the number of nodes. Therefore, it becomes computationally and conceptually challenging for large networks. Here, we present a new predictive procedure combining a graph embedding method with machine learning techniques to predict interactions on the base of nodes' metadata. Graph embedding methods project the nodes of a network onto a---low dimensional---latent feature space. The position of the nodes in the latent feature space can then be used to predict interactions between nodes. Learning a mapping of the nodes' metadata to their position in a latent feature space corresponds to a classic---and low dimensional---machine learning problem. In our current study we used the Random Dot Product Graph model to estimate the embedding of an observed network, and we tested different neural networks architectures to predict the position of nodes in the latent feature space. Flexible machine learning techniques to map the nodes onto their latent positions allow to account for multivariate and possibly complex nodes' metadata. To illustrate the utility of the proposed procedure, we apply it to a large dataset of tourist visits to destinations across New Zealand. We found that our procedure accurately predicts interactions for both existing nodes and nodes newly added to the network, while being computationally feasible even for very large networks. Overall, our study highlights that by exploiting the properties of a well understood statistical model for complex networks and combining it with standard machine learning techniques, we can simplify the link prediction problem when incorporating multivariate node metadata. Our procedure can be immediately applied to different types of networks, and to a wide variety of data from different systems. As such, both from a network science and data science perspective, our work offers a flexible and generalisable procedure for link prediction.


2021 ◽  
Author(s):  
Wael Abdelkader ◽  
Tamara Navarro ◽  
Rick Parrish ◽  
Chris Cotoi ◽  
Federico Germini ◽  
...  

BACKGROUND The rapid growth of the biomedical literature makes identifying strong evidence a time-consuming task. Applying machine learning to the process could be a viable solution that limits effort while maintaining accuracy. OBJECTIVE To summarize the nature and comparative performance of machine learning approaches that have been applied to retrieve high-quality evidence for clinical consideration from the biomedical literature. METHODS We conducted a systematic review of studies that applied machine learning techniques to identify high-quality clinical articles in the biomedical literature. Multiple databases were searched to July 2020. Extracted data focused on the applied machine learning model, steps in the development of the models, and model performance. RESULTS From 3918 retrieved studies, 10 met our inclusion criteria. All followed a supervised machine learning approach and applied, from a limited range of options, a high-quality standard for the training of their model. The results show that machine learning can achieve a sensitivity of 95% while maintaining a high precision of 86%. CONCLUSIONS Applying machine learning to distinguish studies with strong evidence for clinical care has the potential to decrease the workload of manually identifying these. The evidence base is active and evolving. Reported methods were variable across the studies but focused on supervised machine learning approaches. Performance may improve by applying more sophisticated approaches such as active learning, auto-machine learning, and unsupervised machine learning approaches.


Author(s):  
Fenxiao Chen ◽  
Yun-Cheng Wang ◽  
Bin Wang ◽  
C.-C. Jay Kuo

Abstract Research on graph representation learning has received great attention in recent years since most data in real-world applications come in the form of graphs. High-dimensional graph data are often in irregular forms. They are more difficult to analyze than image/video/audio data defined on regular lattices. Various graph embedding techniques have been developed to convert the raw graph data into a low-dimensional vector representation while preserving the intrinsic graph properties. In this review, we first explain the graph embedding task and its challenges. Next, we review a wide range of graph embedding techniques with insights. Then, we evaluate several stat-of-the-art methods against small and large data sets and compare their performance. Finally, potential applications and future directions are presented.


2020 ◽  
Vol 34 (04) ◽  
pp. 4132-4139
Author(s):  
Huiting Hong ◽  
Hantao Guo ◽  
Yucheng Lin ◽  
Xiaoqing Yang ◽  
Zang Li ◽  
...  

In this paper, we focus on graph representation learning of heterogeneous information network (HIN), in which various types of vertices are connected by various types of relations. Most of the existing methods conducted on HIN revise homogeneous graph embedding models via meta-paths to learn low-dimensional vector space of HIN. In this paper, we propose a novel Heterogeneous Graph Structural Attention Neural Network (HetSANN) to directly encode structural information of HIN without meta-path and achieve more informative representations. With this method, domain experts will not be needed to design meta-path schemes and the heterogeneous information can be processed automatically by our proposed model. Specifically, we implicitly represent heterogeneous information using the following two methods: 1) we model the transformation between heterogeneous vertices through a projection in low-dimensional entity spaces; 2) afterwards, we apply the graph neural network to aggregate multi-relational information of projected neighborhood by means of attention mechanism. We also present three extensions of HetSANN, i.e., voices-sharing product attention for the pairwise relationships in HIN, cycle-consistency loss to retain the transformation between heterogeneous entity spaces, and multi-task learning with full use of information. The experiments conducted on three public datasets demonstrate that our proposed models achieve significant and consistent improvements compared to state-of-the-art solutions.


2018 ◽  
Vol 25 (10) ◽  
pp. 1339-1350 ◽  
Author(s):  
Justin Mower ◽  
Devika Subramanian ◽  
Trevor Cohen

Abstract Objective The aim of this work is to leverage relational information extracted from biomedical literature using a novel synthesis of unsupervised pretraining, representational composition, and supervised machine learning for drug safety monitoring. Methods Using ≈80 million concept-relationship-concept triples extracted from the literature using the SemRep Natural Language Processing system, distributed vector representations (embeddings) were generated for concepts as functions of their relationships utilizing two unsupervised representational approaches. Embeddings for drugs and side effects of interest from two widely used reference standards were then composed to generate embeddings of drug/side-effect pairs, which were used as input for supervised machine learning. This methodology was developed and evaluated using cross-validation strategies and compared to contemporary approaches. To qualitatively assess generalization, models trained on the Observational Medical Outcomes Partnership (OMOP) drug/side-effect reference set were evaluated against a list of ≈1100 drugs from an online database. Results The employed method improved performance over previous approaches. Cross-validation results advance the state of the art (AUC 0.96; F1 0.90 and AUC 0.95; F1 0.84 across the two sets), outperforming methods utilizing literature and/or spontaneous reporting system data. Examination of predictions for unseen drug/side-effect pairs indicates the ability of these methods to generalize, with over tenfold label support enrichment in the top 100 predictions versus the bottom 100 predictions. Discussion and Conclusion Our methods can assist the pharmacovigilance process using information from the biomedical literature. Unsupervised pretraining generates a rich relationship-based representational foundation for machine learning techniques to classify drugs in the context of a putative side effect, given known examples.


Author(s):  
Pengyong Li ◽  
Jun Wang ◽  
Ziliang Li ◽  
Yixuan Qiao ◽  
Xianggen Liu ◽  
...  

Self-supervised learning has gradually emerged as a powerful technique for graph representation learning. However, transferable, generalizable, and robust representation learning on graph data still remains a challenge for pre-training graph neural networks. In this paper, we propose a simple and effective self-supervised pre-training strategy, named Pairwise Half-graph Discrimination (PHD), that explicitly pre-trains a graph neural network at graph-level. PHD is designed as a simple binary classification task to discriminate whether two half-graphs come from the same source. Experiments demonstrate that the PHD is an effective pre-training strategy that offers comparable or superior performance on 13 graph classification tasks compared with state-of-the-art strategies, and achieves notable improvements when combined with node-level strategies. Moreover, the visualization of learned representation revealed that PHD strategy indeed empowers the model to learn graph-level knowledge like the molecular scaffold. These results have established PHD as a powerful and effective self-supervised learning strategy in graph-level representation learning.


2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Seyedsaeed Hajiseyedjavadi ◽  
Yu-Ru Lin ◽  
Konstantinos Pelechrinis

AbstractLearning low-dimensional representations of graphs has facilitated the use of traditional machine learning techniques to solving classic network analysis tasks such as link prediction, node classification, community detection, etc. However, to date, the vast majority of these learning tasks are focused on traditional single-layer/unimodal networks and largely ignore the case of multiplex networks. A multiplex network is a suitable structure to model multi-dimensional real-world complex systems. It consists of multiple layers where each layer represents a different relationship among the network nodes. In this work, we propose MUNEM, a novel approach for learning a low-dimensional representation of a multiplex network using a triplet loss objective function. In our approach, we preserve the global structure of each layer, while at the same time fusing knowledge among different layers during the learning process. We evaluate the effectiveness of our proposed method by testing and comparing on real-world multiplex networks from different domains, such as collaboration network, protein-protein interaction network, online social network. Finally, in order to deliberately examine the effect of our model’s parameters we conduct extensive experiments on synthetic multiplex networks.


2020 ◽  
Vol 34 (04) ◽  
pp. 7007-7014
Author(s):  
Shichao Zhu ◽  
Lewei Zhou ◽  
Shirui Pan ◽  
Chuan Zhou ◽  
Guiying Yan ◽  
...  

Graph Neural Networks (GNNs) have achieved state-of-the-art performance in many graph data analysis tasks. However, they still suffer from two limitations for graph representation learning. First, they exploit non-smoothing node features which may result in suboptimal embedding and degenerated performance for graph classification. Second, they only exploit neighbor information but ignore global topological knowledge. Aiming to overcome these limitations simultaneously, in this paper, we propose a novel, flexible, and end-to-end framework, Graph Smoothing Splines Neural Networks (GSSNN), for graph classification. By exploiting the smoothing splines, which are widely used to learn smoothing fitting function in regression, we develop an effective feature smoothing and enhancement module Scaled Smoothing Splines (S3) to learn graph embedding. To integrate global topological information, we design a novel scoring module, which exploits closeness, degree, as well as self-attention values, to select important node features as knots for smoothing splines. These knots can be potentially used for interpreting classification results. In extensive experiments on biological and social datasets, we demonstrate that our model achieves state-of-the-arts and GSSNN is superior in learning more robust graph representations. Furthermore, we show that S3 module is easily plugged into existing GNNs to improve their performance.


2013 ◽  
Vol 380-384 ◽  
pp. 4035-4038 ◽  
Author(s):  
Nan Yao ◽  
Feng Qian ◽  
Zuo Lei Sun

Dimensionality reduction (DR) of image features plays an important role in image retrieval and classification tasks. Recently, two types of methods have been proposed to improve both the accuracy and efficiency for the dimensionality reduction problem. One uses Non-negative matrix factorization (NMF) to describe the image distribution on the space of base matrix. Another one for dimension reduction trains a subspace projection matrix to project original data space into some low-dimensional subspaces which have deep architecture, so that the low-dimensional codes would be learned. At the same time, the graph based similarity learning algorithm which tries to exploit contextual information for improving the effectiveness of image rankings is also proposed for image class and retrieval problem. In this paper, after above two methods mentioned are utilized to reduce the high-dimensional features of images respectively, we learn the graph based similarity for the image classification problem. This paper compares the proposed approach with other approaches on an image database.


Sign in / Sign up

Export Citation Format

Share Document