scholarly journals Applying a Hydrophilic Modified Hollow Fiber Membrane to Reduce Fouling in Artificial Lungs

Separations ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 113
Author(s):  
Nawaf Alshammari ◽  
Meshari Alazmi ◽  
Vajid Nettoor Veettil

Membranes for use in high gas exchange lung applications are riddled with fouling. The goal of this research is to create a membrane that can function in an artificial lung until the actual lung becomes available for the patient. The design of the artificial lung is based on new hollow fiber membranes (HFMs), due to which the current devices have short and limited periods of low fouling. By successfully modifying membranes with attached peptoids, low fouling can be achieved for longer periods of time. Hydrophilic modification of porous polysulfone (PSF) membranes can be achieved gradually by polydopamine (PSU-PDA) and peptoid (PSU-PDA-NMEG5). Polysulfone (PSU-BSA-35Mg), polysulfone polydopamine (PSUPDA-BSA-35Mg) and polysulfone polydopamine peptoid (PSU-PDA-NMEG5-BSA35Mg) were tested by potting into the new design of gas exchange modules. Both surfaces of the modified membranes were found to be highly resistant to protein fouling permanently. The use of different peptoids can facilitate optimization of the low fouling on the membrane surface, thereby allowing membranes to be run for significantly longer time periods than has been currently achieved.

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3651
Author(s):  
Yan Wang ◽  
Diefei Hu ◽  
Zhaoxia Zhang ◽  
Juming Yao ◽  
Jiri Militky ◽  
...  

P-aminophenol is a hazardous environmental pollutant that can remain in water in the natural environment for long periods due to its resistance to microbiological degradation. In order to decompose p-aminophenol in water, manganese oxide/polytetrafluoroethylene (PTFE) hollow fiber membranes were prepared. MnO2 and Mn3O4 were synthesized and stored in PTFE hollow fiber membranes by injecting MnSO4·H2O, KMnO4, NaOH, and H2O2 solutions into the pores of the PTFE hollow fiber membrane. The resultant MnO2/PTFE and Mn3O4/PTFE hollow fiber membranes were characterized using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and thermal analysis (TG). The phenol catalytic degradation performance of the hollow fiber membranes was evaluated under various conditions, including flux, oxidant content, and pH. The results showed that a weak acid environment and a decrease in flux were beneficial to the catalytic degradation performance of manganese oxide/PTFE hollow fiber membranes. The catalytic degradation efficiencies of the MnO2/PTFE and Mn3O4/PTFE hollow fiber membranes were 70% and 37% when a certain concentration of potassium monopersulfate (PMS) was added, and the catalytic degradation efficiencies of MnO2/PTFE and Mn3O4/PTFE hollow fiber membranes were 50% and 35% when a certain concentration of H2O2 was added. Therefore, the manganese oxide/PTFE hollow fiber membranes represent a good solution for the decomposition of p-aminophenol.


1990 ◽  
Vol 14 (5) ◽  
pp. 369-372 ◽  
Author(s):  
Jun Kamo ◽  
Makoto Uchida ◽  
Takayuki Hirai ◽  
Haruhiko Yosida ◽  
Kensuke Kamada ◽  
...  

2012 ◽  
Vol 152-154 ◽  
pp. 574-578 ◽  
Author(s):  
Ping Lan ◽  
Wei Wang

Polyethersulfone (PES) hollow fiber membranes have been widely used in many fields, such as ultrafiltration, microfiltration, reverse osmosis, liquid/liquid or liquid/solid separation, gas separation, hemodialysis, and so on. In this paper, the sheet PES hollow fiber membranes were prepared. The morphology and performance of membranes can be controlled. By studying the influence of the compositions and conditions on the morphology and performance of PES hollow fiber membrane, the relationship of morphology and performance of the membrane is acquired. The additives were used such as glycerol, BuOH and PEG. In addition, immerse phase inversion was used as membranes preparation method. The morphology of the membrane was controlled by changing kinds of additive, concentration of additive and so on. It was found that the membrane morphologies were changed by additive obviously. Porosity , pure water flux, scanning electron microscopy(SEM) were used to characterize the morphology and performance of the membranes.


2009 ◽  
Vol 326 (1) ◽  
pp. 130-136 ◽  
Author(s):  
Gi-Beum Kim ◽  
Seong-Jong Kim ◽  
Min-Ho Kim ◽  
Chul-Un Hong ◽  
Hyung-Sub Kang

RSC Advances ◽  
2017 ◽  
Vol 7 (43) ◽  
pp. 26593-26600 ◽  
Author(s):  
Zihan An ◽  
Rui Xu ◽  
Fengying Dai ◽  
Gaojian Xue ◽  
Xiaoling He ◽  
...  

A novel approach to improve the biocompatibility of PVDF hollow fiber membrane by blending PVDF-g-PACMO copolymer for hemodialysis is provided.


2018 ◽  
Vol 96 (12) ◽  
pp. 1272-1287 ◽  
Author(s):  
Mustafa Usta ◽  
Michael Morabito ◽  
Mohammed Alrehili ◽  
Alaa Hakim ◽  
Alparslan Oztekin

Hollow fiber membrane (HFM) modules are among the most common separation devices employed in membrane separation applications. Three-dimensional steady-state computational fluid dynamics (CFD) simulations are carried out to study flow past hollow fiber membrane banks (HFMB). The current study investigates the effects of flow behavior on membrane performance during binary mixture separations. Carbon dioxide (CO2) removal from methane (CH4) is examined for various arrangements of HFMs in staggered and inline configurations. The common HFM module arrangement is the axial flow configuration. However, this work focuses on the radial cross-flow configuration. The HFM surface is a functional boundary where the suction rate and concentration of each species are coupled and are functions of the local partial pressures, the permeability, and the selectivity of the HFM. CFD simulations employed the turbulent k–ω shear stress transport (SST) model to study HFM performance for Reynolds numbers, 200 ≤ Re ≤ 1000. The efficiency of the inline and staggered arrangements in the separation module is evaluated by the coefficient of performance and the rate of mass flow per unit area of CO2 passing across the membrane surface. This work demonstrates that the module with staggered arrangement outperforms the module with the inline arrangement.


2016 ◽  
Vol 78 (12) ◽  
Author(s):  
Mohd Izzat Iqbal Mohd Zahar ◽  
Mohd Hafiz Dzarfan Othman ◽  
Mukhlis A Rahman ◽  
Juhana Jaafar ◽  
Siti Khadijah Hubadillah

A systematic study of the air gap effects on morphology and mechanical strength of Nickel Oxide (NiO) hollow fiber membranes has been carried out. The hollow fibers were prepared using the dry-jet wet spinning process using a dope solution containing NiO/N-methyl-2-pyrrolidone (NMP)/Arlacel/Poly(ethylene sulphide) with a weight ratio of 70/22.9/0.1/7. Tap water was used as internal and external coagulants. The cross-sectional structure of precursors hollow fiber membrane was studied by scanning electron microscopy (SEM). The results showed that both inner and outer finger-like voids of the hollow membrane were determined by the air gap distance. Experimental results indicated that an increase in air gap distance, from 100 mm to 200 mm, gave a hollow fiber with a lower mechanical strength and higher percentages of cross section surface area covered by finger-like voids structures. This study also revealed that the air gap introduced an elongation stress because of gravity on the internal or external surfaces of the NiO hollow fibers. A more effective hollow fiber membrane which is in asymmetric structure instead of symmetric structure can be produced by using air gap higher than 200 mm. 


Author(s):  
S. A. Mousavi ◽  
Z. Arab Aboosadi ◽  
A. Mansourizadeh ◽  
B. Honarvar

Abstract Wetting and fouling have significantly affected the application of membrane distillation (MD). In this work, a dip-coating method was used for improving surface hydrophobicity of the polyetherimide (PEI) hollow fiber membrane. An air gap membrane distillation (AGMD) process was applied for treatment of the methylene blue (MB) solution. The porous PEI membrane was fabricated by a dry-wet spinning process and the hydrophobic 2-(Perfluoroalkyl) ethanol (Zonyl® BA) was used as the coating material. From FESEM, the modified PEI-Zonyl membrane showed an open structure with large finger-like cavities. The modified membrane displayed a narrow pore size distribution with mean pore size of 0.028 μm. The outer surface contact angle of the PEI-Zonly membrane increased from 81.3° to 100.4° due to the formation of an ultra-thin coated layer. The pure water flux of the PEI-Zonyl membrane was slightly reduced compared to the pristine PEI membrane. The permeate flux of 6.5 kg/m2 h and MB rejection of 98% was found for the PEI-Zonyl membrane during 76 h of the AGMD operation. Adsorption of MB on the membrane surface was confirmed based on the Langmuir isotherm evaluation, AFM and FESM analysis. The modified PEI-Zonyl membrane can be a favorable alternative for AGMD of dyeing wastewaters.


Membranes ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 884
Author(s):  
Azadeh Nazif ◽  
Hamed Karkhanechi ◽  
Ehsan Saljoughi ◽  
Seyed Mahmoud Mousavi ◽  
Hideto Matsuyama

Hollow fiber membranes (HFMs) possess desired properties such as high surface area, desirable filtration efficiency, high packing density relative to other configurations. Nevertheless, they are often possible to break or damage during the high-pressure cleaning and aeration process. Recently, using the braid reinforcing as support is recommended to improve the mechanical strength of HFMs. The braid hollow fiber membrane (BHFM) is capable apply under higher pressure conditions. This review investigates the fabrication parameters and the methods for the improvement of BHFM performance.


Sign in / Sign up

Export Citation Format

Share Document