scholarly journals Effective Parameters on Fabrication and Modification of Braid Hollow Fiber Membranes: A Review

Membranes ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 884
Author(s):  
Azadeh Nazif ◽  
Hamed Karkhanechi ◽  
Ehsan Saljoughi ◽  
Seyed Mahmoud Mousavi ◽  
Hideto Matsuyama

Hollow fiber membranes (HFMs) possess desired properties such as high surface area, desirable filtration efficiency, high packing density relative to other configurations. Nevertheless, they are often possible to break or damage during the high-pressure cleaning and aeration process. Recently, using the braid reinforcing as support is recommended to improve the mechanical strength of HFMs. The braid hollow fiber membrane (BHFM) is capable apply under higher pressure conditions. This review investigates the fabrication parameters and the methods for the improvement of BHFM performance.

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3651
Author(s):  
Yan Wang ◽  
Diefei Hu ◽  
Zhaoxia Zhang ◽  
Juming Yao ◽  
Jiri Militky ◽  
...  

P-aminophenol is a hazardous environmental pollutant that can remain in water in the natural environment for long periods due to its resistance to microbiological degradation. In order to decompose p-aminophenol in water, manganese oxide/polytetrafluoroethylene (PTFE) hollow fiber membranes were prepared. MnO2 and Mn3O4 were synthesized and stored in PTFE hollow fiber membranes by injecting MnSO4·H2O, KMnO4, NaOH, and H2O2 solutions into the pores of the PTFE hollow fiber membrane. The resultant MnO2/PTFE and Mn3O4/PTFE hollow fiber membranes were characterized using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and thermal analysis (TG). The phenol catalytic degradation performance of the hollow fiber membranes was evaluated under various conditions, including flux, oxidant content, and pH. The results showed that a weak acid environment and a decrease in flux were beneficial to the catalytic degradation performance of manganese oxide/PTFE hollow fiber membranes. The catalytic degradation efficiencies of the MnO2/PTFE and Mn3O4/PTFE hollow fiber membranes were 70% and 37% when a certain concentration of potassium monopersulfate (PMS) was added, and the catalytic degradation efficiencies of MnO2/PTFE and Mn3O4/PTFE hollow fiber membranes were 50% and 35% when a certain concentration of H2O2 was added. Therefore, the manganese oxide/PTFE hollow fiber membranes represent a good solution for the decomposition of p-aminophenol.


2012 ◽  
Vol 152-154 ◽  
pp. 574-578 ◽  
Author(s):  
Ping Lan ◽  
Wei Wang

Polyethersulfone (PES) hollow fiber membranes have been widely used in many fields, such as ultrafiltration, microfiltration, reverse osmosis, liquid/liquid or liquid/solid separation, gas separation, hemodialysis, and so on. In this paper, the sheet PES hollow fiber membranes were prepared. The morphology and performance of membranes can be controlled. By studying the influence of the compositions and conditions on the morphology and performance of PES hollow fiber membrane, the relationship of morphology and performance of the membrane is acquired. The additives were used such as glycerol, BuOH and PEG. In addition, immerse phase inversion was used as membranes preparation method. The morphology of the membrane was controlled by changing kinds of additive, concentration of additive and so on. It was found that the membrane morphologies were changed by additive obviously. Porosity , pure water flux, scanning electron microscopy(SEM) were used to characterize the morphology and performance of the membranes.


RSC Advances ◽  
2017 ◽  
Vol 7 (43) ◽  
pp. 26593-26600 ◽  
Author(s):  
Zihan An ◽  
Rui Xu ◽  
Fengying Dai ◽  
Gaojian Xue ◽  
Xiaoling He ◽  
...  

A novel approach to improve the biocompatibility of PVDF hollow fiber membrane by blending PVDF-g-PACMO copolymer for hemodialysis is provided.


2016 ◽  
Vol 78 (12) ◽  
Author(s):  
Mohd Izzat Iqbal Mohd Zahar ◽  
Mohd Hafiz Dzarfan Othman ◽  
Mukhlis A Rahman ◽  
Juhana Jaafar ◽  
Siti Khadijah Hubadillah

A systematic study of the air gap effects on morphology and mechanical strength of Nickel Oxide (NiO) hollow fiber membranes has been carried out. The hollow fibers were prepared using the dry-jet wet spinning process using a dope solution containing NiO/N-methyl-2-pyrrolidone (NMP)/Arlacel/Poly(ethylene sulphide) with a weight ratio of 70/22.9/0.1/7. Tap water was used as internal and external coagulants. The cross-sectional structure of precursors hollow fiber membrane was studied by scanning electron microscopy (SEM). The results showed that both inner and outer finger-like voids of the hollow membrane were determined by the air gap distance. Experimental results indicated that an increase in air gap distance, from 100 mm to 200 mm, gave a hollow fiber with a lower mechanical strength and higher percentages of cross section surface area covered by finger-like voids structures. This study also revealed that the air gap introduced an elongation stress because of gravity on the internal or external surfaces of the NiO hollow fibers. A more effective hollow fiber membrane which is in asymmetric structure instead of symmetric structure can be produced by using air gap higher than 200 mm. 


Author(s):  
Mustafa Usta ◽  
Ali E. Anqi ◽  
Michael Morabito ◽  
Alaa Hakim ◽  
Mohammed Alrehili ◽  
...  

Reverse Osmosis (RO) is a process whereby solutes are removed from a solution by means of a semipermeable membrane. Providing access to clean water is one of our generation’s grand engineering challenges, and RO processes are taking center stage in the global implementation of water purification technologies. In this work, computational fluid dynamics simulations are performed to elucidate the steady state phenomena associated with the mass transport of solution through cylindrical hollow fiber membranes in hopes of optimizing RO technologies. The Navier-Stokes and mass transport equations are solved numerically to determine the flow field and solute concentration distribution in the hollow fiber membrane bank, which is a portion of the three-dimensional feed channel containing a small collection of fibers. The k-ω Shear Stress Transport turbulence model is employed to characterize the flow field. Special attention is given to the prediction of water passage through hollow fiber membranes by the use of the solution-diffusion model, which couples the salt gradient, water flux, and local pressure at the membrane surface. This work probes hollow fiber membrane arrangement in the feed channel by considering inline and staggered alignments. Feed flow rates for Reynolds number values ranging between 400 and 1000 are considered. Increased momentum mixing within the feed channel solution can substantially enhance the system efficiency, and hollow fiber membrane arrangements and feed flow rates dictate the momentum mixing intensity. Velocity and vorticity iso-surfaces of the flow domain are presented in order to assess the momentum mixing achieved with various hollow fiber membrane arrangements and flow rates. The total water permeation rate per hour is calculated to compare system efficiencies, and the coefficient of performance is calculated to compare membrane performance relative to the necessary power input, both for the various hollow fiber membrane arrangements and feed flow rates.


2018 ◽  
Vol 14 (3) ◽  
pp. 343-347 ◽  
Author(s):  
Sumarni Mansur ◽  
Mohd Hafiz Dzarfan Othman ◽  
Ahmad Fauzi Ismail ◽  
Muhammad Nidzhom Zainol Abidin ◽  
Noresah Said ◽  
...  

Asymmetric, porous ultrafiltration polysulfone (PSf) hollow fiber membranes were fabricated via the dry-wet phase inversion spinning technique specifically for haemodialysis membrane. The objective was to discover the suitable spinning condition for the fabrication of ultrafiltration hollow fiber membrane with desired sponge-like structure. During haemodialysis procedure, uremic toxins such as urea and creatinine range from size 10,000-55,000 Da needs to be excreted out from the blood. While, proteins such as albumin (66,000 Da) need to be retained. The physical structure or morphology of a fabricated membrane is a major concern in determining the efficiency of a dialysis membrane. Different type of membrane morphology will give a different result in term of its permeability and clearance efficiency. The phase inversion spinning technique is suitable in producing ultrafiltation (UF) membrane where the average pore size of the fabricated membrane is in the range of 0.001 – 0.1 µm. However, there is many factors need to be controlled and manipulated in the phase inversion technique. In this study, the effect of the PVP on membrane pore size and performances were analysed. The contact angle measurement was measured to determine the hydrophilicity of the fibers. The hydrophilic polymer is favorable to avoid fouling and increase its biocompatibility. Furthermore, the diameter of the hollow fibers was determined using a scanning electron microscope (SEM). The effects of different morphology of the hollow fibers on the performance of the membranes were evaluated by pure water flux and BSA rejection. Both techniques were tested using permeation flux system. Based on the results obtained, it is found that the finger-like macrovoids in PSf hollow fiber membranes were suppressed by adding 8% PVP (Mw of 360 kDa) into the spinning dope solution as the result of a drastic increase in dope viscosity. On top of that, fiber spun with 8% PVP show more porous structure which contribute to higher permeability of the membrane. The result of this study can benefit to the membrane field of research especially in membrane technology for haemodialysis application.


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1398 ◽  
Author(s):  
Gong Chen ◽  
Yuan Chen ◽  
Tingjian Huang ◽  
Zhongchen He ◽  
Jianjun Xu ◽  
...  

Poly(ether ether ketone) (PEEK) hollow fiber membranes were successfully prepared from miscible blends of PEEK and polyetherimide (PEI) via thermally-induced phase separation (TIPS) with subsequent extraction of the PEI diluent. The phase structure evolution, extraction kinetics, membrane morphology, pore size distribution and permeability for the hollow fiber membrane were studied in detail. Extraction experiments, differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMA) studies showed that the heat treatment had a significant influence on the two-phase structure of PEEK/PEI, and that it was controlled by the crystallization kinetic of PEEK and the diffusion kinetic of PEI. As the annealing temperature increased, the controlling factor of the phase separation changed from PEEK crystallization to PEI diffusion, and the main distribution of the amorphous PEI chains were changed from the interlamellar region to the interfibrillar or interspherulitic regions of PEEK crystallization. When the annealing temperature increased from 240 °C to 280 °C, the extracted amount of PEI increased from 85.19 to 96.24 wt %, and the pore diameter of PEEK membrane increased from 10.59 to 37.85 nm, while the surface area of the PEEK membrane decreased from 111.9 to 83.69 m2/g. Moreover, the water flux of the PEEK hollow fiber membranes increased from 1.91 × 10−2 to 1.65 × 10−1 L h−1 m−2 bar−1 as the annealing temperature increased from 240 °C to 270 °C. The structure and properties of the PEEK hollow fiber membrane can be effectively controlled by regulating heat treatment conditions.


2006 ◽  
Vol 930 ◽  
Author(s):  
Ian D. Norris ◽  
Malcolm C. Morrison ◽  
Benjamin R. Mattes

ABSTRACTHigh flux composite hollow fiber membranes for brackish water desalination based on the interfacial polymerization of a cross-linked polyamide salt rejecting layer onto a semi-permeable hollow fiber support have been developed. These hollow fiber membranes exploit the advantages of using a thin-film composite reverse osmosis membrane (higher flux and salt rejection) with the higher surface area/volume ratio of hollow fiber membrane elements. The composite hollow fiber membranes were prepared by coating a polysulfone hollow fiber with a polyamide salt rejecting layer based on the interfacial polymerization reaction between m-phenylenediamine and trimesoyl chloride/isophthaloyl dichloride. The RO figures-of-merit of these composite polyamide hollow fiber membranes were evaluated for the desalination of a synthetic brackish water feed (2,000 ppm NaCl) at 225 psi over a 60 hour period. After an initial break-in period in which the flux declined 30% due to membrane compaction, the stabilized RO figures-of-merit for these hollow fiber membranes were a water flux of 280 L/m2·day and a salt rejection of 99.1%. Based on the water flux and packing density of the membrane, it is estimated that the stable production of potable water of a hollow fiber membrane element containing these composite membranes will be between 20 and 30% greater than that of a similarly sized spiral wound brackish water membrane element.


2021 ◽  
Vol 899 ◽  
pp. 451-455
Author(s):  
Dmitry N. Matveev ◽  
Vladimir P. Vasilevsky

The design and dimensional characteristics of the spinneret affect not only the geometry of the hollow fiber, but also the transport properties of the hollow fiber membranes. In the literature available today, there is a limited number of works in which the influence of the design and dimensional characteristics of the spinneret is studied. In this work, using the example of polysulfone hollow fiber membranes, it was shown that the use of a spinneret with smaller annular diameters leads to an increase in the gas permeability of the hollow fiber membrane with a decrease in the value of the ideal selectivity for the He/CO2 gas pair. It was found that using the spinneret with large annular diameters, the hollow fiber membrane is obtained with a smaller value of the average pore size of the flow, which is in agreement with the obtained data on gas permeability.


Separations ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 113
Author(s):  
Nawaf Alshammari ◽  
Meshari Alazmi ◽  
Vajid Nettoor Veettil

Membranes for use in high gas exchange lung applications are riddled with fouling. The goal of this research is to create a membrane that can function in an artificial lung until the actual lung becomes available for the patient. The design of the artificial lung is based on new hollow fiber membranes (HFMs), due to which the current devices have short and limited periods of low fouling. By successfully modifying membranes with attached peptoids, low fouling can be achieved for longer periods of time. Hydrophilic modification of porous polysulfone (PSF) membranes can be achieved gradually by polydopamine (PSU-PDA) and peptoid (PSU-PDA-NMEG5). Polysulfone (PSU-BSA-35Mg), polysulfone polydopamine (PSUPDA-BSA-35Mg) and polysulfone polydopamine peptoid (PSU-PDA-NMEG5-BSA35Mg) were tested by potting into the new design of gas exchange modules. Both surfaces of the modified membranes were found to be highly resistant to protein fouling permanently. The use of different peptoids can facilitate optimization of the low fouling on the membrane surface, thereby allowing membranes to be run for significantly longer time periods than has been currently achieved.


Sign in / Sign up

Export Citation Format

Share Document