scholarly journals The Potential Role of Genetic Markers in Talent Identification and Athlete Assessment in Elite Sport

Sports ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 88 ◽  
Author(s):  
Ysabel Jacob ◽  
Tania Spiteri ◽  
Nicolas Hart ◽  
Ryan Anderton

In elite sporting codes, the identification and promotion of future athletes into specialised talent pathways is heavily reliant upon objective physical, technical, and tactical characteristics, in addition to subjective coach assessments. Despite the availability of a plethora of assessments, the dependence on subjective forms of identification remain commonplace in most sporting codes. More recently, genetic markers, including several single nucleotide polymorphisms (SNPs), have been correlated with enhanced aerobic capacity, strength, and an overall increase in athletic ability. In this review, we discuss the effects of a number of candidate genes on athletic performance, across single-skilled and multifaceted sporting codes, and propose additional markers for the identification of motor skill acquisition and learning. While displaying some inconsistencies, both the ACE and ACTN3 polymorphisms appear to be more prevalent in strength and endurance sporting teams, and have been found to correlate to physical assessments. More recently, a number of polymorphisms reportedly correlating to athlete performance have gained attention, however inconsistent research design and varying sports make it difficult to ascertain the relevance to the wider sporting population. In elucidating the role of genetic markers in athleticism, existing talent identification protocols may significantly improve—and ultimately enable—targeted resourcing in junior talent pathways.

2010 ◽  
Vol 70 (4) ◽  
pp. 668-674 ◽  
Author(s):  
P Dieudé ◽  
M Guedj ◽  
J Wipff ◽  
B Ruiz ◽  
G Riemekasten ◽  
...  

BackgroundRecent evidence has highlighted a potential role of interleukin 1β (IL-1β) in systemic sclerosis (SSc). NLRP1 provides a scaffold for the assembly of the inflammasome that promotes the processing and maturation of pro-IL-1β. In addition, NLRP1 variants were found to confer susceptibility to autoimmune disorders.ObjectiveTo study a possible association of the NLRP1 rs6502867, rs2670660 and rs8182352, rs12150220 and rs4790797 with SSc in the European Caucasian population.MethodsNLRP1 single nucleotide polymorphisms were genotyped in 3227 individuals comprising a discovery set (870 SSc patients and 962 controls) and a replication set including individuals from Germany (532 SSc patients and 324 controls) and Italy (527 SSc patients and 301 controls), all individuals being of European Caucasian origin.ResultsConditional analyses revealed a significant association for the NLRP1 rs8182352 variant with both anti-topoisomerase-positive and SSc-related fibrosing alveolitis (FA) subsets under an additive model: p=0.0042, OR 1.23 (95% CI 1.07 to 1.41) and p=0.0065 OR 1.19 (95% CI 1.05 to 1.36), respectively. Logistic regression analysis showed an additive effect of IRF5 rs2004640, STAT4 rs7574865 and NLRP1 rs8182352 risk alleles on SSc-related FA.ConclusionsOur results establish NLRP1 as a new genetic susceptibility factor for SSc-related pulmonary fibrosis and anti-topoisomerase-positive SSc phenotypes. This provides new insights into the pathogenesis of SSc, underlining the potential role of innate immunity in particular in the FA-positive SSc subphenotype, which represents a severe subset of the disease.


2018 ◽  
Vol 18 (3) ◽  
pp. 685-698 ◽  
Author(s):  
Reza Talebi ◽  
Ahmad Ahmadi ◽  
Fazlollah Afraz ◽  
Julien Sarry ◽  
Florent Woloszyn ◽  
...  

Abstract The present study aimed to investigate the presence of polymorphisms at four known genes controlling ovine prolificacy i.e. BMP15, GDF9, BMPR1B and B4GALNT2 in a sample of 115 Iranian Mehraban ewes and their association with litter size (LS) and lambs’ birth weight (BW) traits. Using Sanger sequencing of exons and polymorphism specific genotyping, ten SNPs (Single Nucleotide Polymorphisms) were observed in only two genes, GDF9 and BMPR1B. Seven SNPs were found in the GDF9 gene on the chromosome 5. Among them, six were already described in the coding sequence, and a new one (g.41840985C>T) was found in the 3’UTR. In the BMPR1B gene on the chromosome 6, three novel SNPs were detected in the exon 7 (g.29382184G>A; g.29382337G>A and g.29382340G>A). Allelic frequencies were established for six SNPs among the ten identified and they were in Hardy-Weinberg equilibrium. A significant association was found between the novel SNPs found in the exon 7 of BMPR1B and LS. Present results indicate the potential role of the BMPR1B locus in controlling prolificacy of Mehraban sheep and provide genetic markers for further exploitation in selection to improve reproductive efficiency.


2018 ◽  
Vol 23 (3) ◽  
pp. 135-144
Author(s):  
Katarzyna Pawlak-Osińska ◽  
Katarzyna Linkowska ◽  
Karolina Hołub ◽  
Katarzyna Winiarska ◽  
Bartosz Stankiewicz ◽  
...  

Considering the possibility of a common genetic background of vertigo and epilepsy, we genotyped an affected group of individuals with vertigo and an unaffected group, by studying 26 single-nucleotide polymorphisms (SNPs) in 14 genes which were previously reported to be of particular importance for epilepsy. Significant differences were found between the patients and the control group (χ2 = 38.3, df = 3, p = 1.6 × 10–7) for the frequencies of haplotypes consist ing of 2 SNPs located in chromosome 11 (rs1939012 and rs1783901 within genes MMP8 and SCN3B, respectively). The haplotype rs1939012:C-rs1783901:A, consisting of the minor-frequency alleles was found to be associated with a higher risk of vertigo (OR = 5.0143, 95% CI = 1.6991–14.7980, p = 0.0035). In contrast, the haplotype rs1939012:T-rs1783901:A showed a significant association with a decreased risk of the disease (OR = 0.0597, 95% CI = 0.0136–0.2620, p = 0.0002). Our results suggest that the SNPs rs1939012 and rs1783901 may play a potential role of gene regulation and/or epistasis in a complex etiology of vertigo.


2018 ◽  
Vol 25 (1) ◽  
pp. 33-43
Author(s):  
Defeng Xu ◽  
Lu Liu ◽  
Haimei Li ◽  
Li Sun ◽  
Li Yang ◽  
...  

Objective: To evaluate the role of the adrenergic receptor alpha-2A gene ( ADRA2A) in the genetic etiology of ADHD comorbid with tic disorders (ADHD+TD). Method: Two single nucleotide polymorphisms (SNPs) of ADRA2A were genotyped and analyzed in 936 normal controls and 1,815 ADHD probands, including 1,249 trios. Approximately 16% of the ADHD probands also had a diagnosis of TD. Results: No significant association was found between ADRA2A and ADHD in general. Case-control analyses indicated different allelic and genotypic distributions of rs553668 between ADHD+TD and controls in males. Family-based association tests showed that the G allele of rs1800544, the A allele of rs553668, and the GA haplotype consisting of these two SNPs were overtransmitted in the ADHD+TD trios, especially in males. Moreover, the allelic/genotypic distribution and allelic transmission were different between ADHD+TD and ADHD without TD. Conclusion: ADRA2A may be associated with ADHD+TD, especially in males.


Author(s):  
Lyudmila P. Kuzmina ◽  
Anastasiya G. Khotuleva ◽  
Evgeniy V. Kovalevsky ◽  
Nikolay N. Anokhin ◽  
Iraklij M. Tskhomariya

Introduction. Various industries widely use chrysotile asbestos, which determines the relevance of research aimed at the prevention of asbestos-related diseases. It is promising to assess the role of specific genes, which products are potentially involved in the development and regulation of certain links in the pathogenesis of asbestosis, forming a genetic predisposition to the disease. The study aims to analyze the presence of associations of genetic polymorphism of cytokines and antioxidant enzymes with asbestosis development. Materials and methods. Groups were formed for examination among employees of OJSC "Uralasbest" with an established diagnosis of asbestosis and without lung diseases. For each person included in the study, dust exposure doses were calculated considering the percentage of time spent at the workplace during the shift for the entire work time. Genotyping of single nucleotide polymorphisms of cytokines IL1b (rs16944), IL4 (rs2243250), IL6 (rs1800795), TNFα (rs1800629) and antioxidant enzymes SOD2 (rs4880), GSTP1 (rs1610011), CAT (rs1001179) was carried out. Results. The authors revealed the associations of polymorphic variants A511G IL1b gene (OR=2.457, 95% CI=1.232-4.899) and C47T SOD2 gene (OR=1.705, 95% CI=1.055-2.756) with the development of asbestosis. There was an increase in the T allele IL4 gene (C589T) frequency in persons with asbestosis at lower values of dust exposure doses (OR=2.185, 95% CI=1.057-4.514). The study showed the associations of polymorphism C589T IL4 gene and C174G IL6 gene with more severe asbestosis, polymorphism A313G GSTP1 gene with pleural lesions in asbestosis. Conclusion. Polymorphic variants of the genes of cytokines and antioxidant enzymes, the protein products directly involved in the pathogenetic mechanisms of the formation of asbestosis, contribute to forming a genetic predisposition to the development and severe course of asbestosis. Using the identified genetic markers to identify risk groups for the development and intense period of asbestos-related pathology will optimize treatment and preventive measures, considering the organism's characteristics.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Erika Calvano Küchler ◽  
Agnes Schröder ◽  
Vinicius Broska Teodoro ◽  
Ute Nazet ◽  
Rafaela Scariot ◽  
...  

Abstract Background This study aimed to investigate, if different physiological concentrations of vitamin D (25(OH)D3) and single nucleotide polymorphisms in vitamin D receptor (VDR) gene have an impact on gene expression in human periodontal ligament (hPDL) fibroblasts induced by simulated orthodontic compressive strain. Methods A pool of hPDL fibroblasts was treated in absence or presence of 25(OH)D3 in 3 different concentrations (10, 40 and 60 ng/ml). In order to evaluate the role of single nucleotide polymorphisms in the VDR gene, hPDL fibroblasts from 9 patients were used and treated in absence or presence of 40 ng/ml 25(OH)D3. Each experiment was performed with and without simulated orthodontic compressive strain. Real-time PCR was used for gene expression and allelic discrimination analysis. Relative expression of dehydrocholesterol reductase (DHCR7), Sec23 homolog A, amidohydrolase domain containing 1 (AMDHD1), vitamin D 25-hydroxylase (CYP2R1), Hydroxyvitamin D-1-α hydroxylase, receptor activator of nuclear factor-κB ligand (RANKL), osteoprotegerin (OPG), cyclooxygenase-2 (COX-2) and interleukin-6 (IL6) was assessed. Three single nucleotide polymorphisms in VDR were genotyped. Parametric or non-parametric tests were used with an alpha of 5%. Results RANKL, RANKL:OPG ratio, COX-2, IL-6, DHCR7, CYP2R1 and AMDHD1 were differentially expressed during simulated orthodontic compressive strain (p < 0.05). The RANKL:OPG ratio was downregulated by all concentrations (10 ng/ml, 40 ng/ml and 60 ng/ml) of 25(OH)D3 (mean = 0.96 ± 0.68, mean = 1.61 ± 0.66 and mean = 1.86 ± 0.78, respectively) in comparison to the control (mean 2.58 ± 1.16) (p < 0.05). CYP2R1 gene expression was statistically modulated by the different 25(OH)D3 concentrations applied (p = 0.008). Samples from individuals carrying the GG genotype in rs739837 presented lower VDR mRNA expression and samples from individuals carrying the CC genotype in rs7975232 presented higher VDR mRNA expression (p < 0.05). Conclusions Simulated orthodontic compressive strain and physiological concentrations of 25(OH)D3 seem to regulate the expression of orthodontic tooth movement and vitamin-D-related genes in periodontal ligament fibroblasts in the context of orthodontic compressive strain. Our study also suggests that single nucleotide polymorphisms in the VDR gene regulate VDR expression in periodontal ligament fibroblasts in the context of orthodontic compressive strain.


2017 ◽  
Vol 48 (4) ◽  
pp. 531-540 ◽  
Author(s):  
Vladimir B. Dorokhov ◽  
Alexandra N Puchkova ◽  
Anton O. Taranov ◽  
Petr A. Slominsky ◽  
Valentin A. Vavilin ◽  
...  

2011 ◽  
Vol 21 (9) ◽  
pp. 1664-1671 ◽  
Author(s):  
Helmut von Keyserling ◽  
Thomas Bergmann ◽  
Miriam Schuetz ◽  
Ursula Schiller ◽  
Jonas Stanke ◽  
...  

BackgroundHost genetic characteristics and environmental factors may correlate with risk for cervical cancer development. Here we describe a retrospective screening study for single nucleotide polymorphisms (SNPs) in genetic markersTP53, MTHFR, CYP1A1,andCYP2E1in 749 patients.MethodsA multiplex ligation-dependent polymerase chain reaction approach was applied. We used archived material from human papillomavirus tests and correlated SNP genotypes to the corresponding clinical data. Semantic integration was used to identify and evaluate the clinical status from electronic health records.ResultsAn association with cervical cancer and high-grade dysplasia was found for the rare homozygous CC genotype (rs4646903) inCYP1A1(odds ratio [OR], 8.862). Odds ratios were also significantly elevated for heterozygousMTHFRCT genotype (rs1801133; OR, 1.457). No significant association was found inTP53(rs1042522) andCYP2E1(rs3813867). In addition, we found smokers at higher risk (OR, 2.688) and identified pregnancies as a significant risk factor (OR, 1.54).ConclusionsOur protocol enables a feasible way for further retrospective large sample size evaluation of potential genetic markers. This study revealed genetic associations of a rare SNP genotype with cervical dysplasia in one of the largest patient sample to date that warrants further investigation.


Sign in / Sign up

Export Citation Format

Share Document