scholarly journals Broadcasting Winter Wheat Can Increase Grain Yield without Reducing the Kernels per Spike and the Kernel Weight

2018 ◽  
Vol 10 (12) ◽  
pp. 4858 ◽  
Author(s):  
Yunlong Zhai ◽  
Quanzhong Wu ◽  
Guodong Chen ◽  
Hailin Zhang ◽  
Xiaogang Yin ◽  
...  

In North China, row spacing is the most common planting pattern used for winter wheat. Currently, there are three sowing and tillage methods for row spacing: rotary tillage sowing with straw return (RTS), subsoil tillage sowing with straw return (DTS), and no-tillage sowing with straw return (NTS). Recently, Hao proposed a new sowing pattern called uniform broadcast sowing with straw return (BSS) which could increase winter wheat yield. In this research, a field experiment was conducted during the growing seasons in 2011–2012 and 2012–2013. The winter wheat (Triticum aestivum L.) variety Jimai 22 was sowed with the four seeding and tillage methods—RTS, DTS, NTS, and BSS—at the China Agriculture University Wuqiao experimental station in the North China Plain. After tillage sowing and determining the sowing efficiency, the effective cover ratio of the seeds was measured, and the emergence ratio was calculated after emergence. In the two growing seasons, the growth and development stages were recorded. The dry matter accumulation (DMA), the yield, and the yield components (spikes per hectare, kernels per spike, and kernel weight) were also determined. We also measured the canopy structure leaf area index (LAI) and the stand uniformity. The results showed that BSS had the lowest emergence rate and lowest plant stands when compared with the other treatments. However, BSS had the highest grain yield at 7599.0 kg·ha−1 and 9763.3 kg·ha−1, which was 11.55, 16.17, 20.16% and 13.01, 15.68, 21.88% higher than DTS, RTS, and NTS in the 2011/2012 and 2012/2013 growing seasons, respectively. The improved grain yield of BSS was due to the increased productive tillers per hectometer-squared, which was attributed to the higher stand uniformity. More importantly, the increased tillers per hectare and grain yield were not accompanied by a reduction in grain number per spike or grain weight. The stand uniformity could facilitate canopy construction and population architecture and result in more even sunlight distribution, increased leaf area index (LAI) and sunlight interception, and enhanced photosynthetic activity. The stand uniformity also could increase both the pre-anthesis and post-anthesis DMA and promote the harvest index (HI). This study indicates that BSS is the most suitable sowing method for winter wheat production in North China.

2014 ◽  
Vol 936 ◽  
pp. 2389-2395
Author(s):  
Bin Hu ◽  
Min Zhang

In order to investigate the optimal water-saving and high-efficient irrigation patterns of winter wheat in North China Plain, during 2010-2011 and 2011-2012 winter wheat growing seasons, 3 irrigation treatments were conducted, i.e., irrigated 120 mm only at jointing stage (T1), irrigated 120 mm only at heading stages (T2), and irrigated 60 mm each at jointing and heading stages (T3), respectively, to study the effect of deficit irrigation on root-shoot development and grain yield of winter wheat in North China Plain. The results showed that under the condition of irrigated 120 mm during the winter wheat growing season, the treatment which irrigated 60 mm each at jointing and heading stages, the leaf area index significantly (LSD, P<0.05) increased at milky stage, which was mainly due to increase the leaf area index at 0-20 and more than 60 cm above the ground surface. The 2 growing season results revealed that dry matter accumulation at maturity stage in T3 was significantly (LSD, P<0.05) higher than those in T1 and T2. Compared with T2, the root length density in T1 and T3 were significantly (LSD, P<0.05) higher below the ground surface 50 cm. The results indicated that irrigated 60 mm each at jointing and heading stages during the winter wheat growing seasons, grain yield was the highest, which could be attributed to significantly (LSD, P<0.05) increase the spike numbers. Under the condition of irrigated 120 mm during the winter wheat growing seasons in North China Plain, it is suggests that winter wheat should be irrigated 60 mm each at jointing and heading stages, to achieve reasonable water use efficiency and grain yield.


Author(s):  
Wisam Khald Sabri ◽  
Abdullah Oktem

Aims: The study was designed to elucidate the effect of different nitrogen (N) fertilizer levels on five different maize cultivars. Study Design:  A split plot experimental design in randomized complete blocks (RCBD) with three replicates. Arrangement of seven nitrogen levels and five single cross hybrids were compared. Main plots were nitrogen levels and subplots were varieties. Place and Duration of Study: College of Agricultural Engineering Sciences at the University of Duhok, Iraq. The study was undertaken fromMarch– August 2021. Methodology: At the present research, five single cross-hybrid corn varieties were used, which were: CADZ, DKC6050, DRACHMA, MYIMY and ZP6468D. Arrangement of seven nitrogen fertilizer levels were 0, 50, 100, 150, 200, 250 and 300 kg N ha−1. The following features were studied: plant height, leaf area index, thousand kernel weight, total grain yield, total chlorophyll, protein% and oil %.The collected data were projected to SAS software program for analysis. The significant differences between treatment means were calculated using Duncan’s multiple ranges. Results: It was reveal that there were significant effect of different nitrogen fertilizer levels, maize genotypes as well as the interaction of nitrogen and genotype of maize (P<.01) for plant height, leaf area index, 1000 kernel weight, total grain yield, total chlorophyll and protein %. However, There were no significant differences between different maize genotypes as well as different nitrogen fertilizer levels (P>.05) with oil %, but the interaction of nitrogen and genotype of maize was significant (P<.01). Conclusion: Increasing the amount of nitrogen had better effect on studied characteristics of different maize varieties, in which adding 300 kg nitrogen had optimum results. In considering the response of maize varieties to nitrogen, the best variety was DRACHMA genotype while the worst variety was CADZ genotype, however this hybrids was superior in some traits.


2007 ◽  
Vol 6 (12) ◽  
pp. 1437-1443 ◽  
Author(s):  
Peng YANG ◽  
Wen-bin WU ◽  
Hua-jun TANG ◽  
Qing-bo ZHOU ◽  
Jin-qiu ZOU ◽  
...  

2018 ◽  
Vol 222 ◽  
pp. 230-237 ◽  
Author(s):  
Yi Chen ◽  
Zhao Zhang ◽  
Fulu Tao ◽  
Taru Palosuo ◽  
Reimund P. Rötter

2008 ◽  
Vol 54 (No. 7) ◽  
pp. 313-319 ◽  
Author(s):  
H. Han ◽  
Z. Li ◽  
T. Ning ◽  
X. Zhang ◽  
Y. Shan ◽  
...  

Water stress is a frequent and critical limit to wheat (<I>Triticum aestivum</I> L.) production in North China. It has been shown that photosynthetic active radiation (PAR) is closely related to crop production. An experiment was conducted to investigate the effects of deficit irrigation and winter wheat varieties on the PAR capture ration, PAR utilization and grain yield. Field experiments involved Jimai 20 (J; high yield variety) and Lainong 0153 (L; dryland variety) with non-irrigation and irrigated at jointing stage. The results showed that whether irrigated at jointing stage or not, there was no significant difference between J and L with respect to the amount of PAR intercepted by the winter wheat canopies. However, significant differences were observed between the varieties with respect to the amount of PAR intercepted by plants that were 60–80 cm above the ground surface. This result was mainly caused by the changes in the vertical distributions of leaf area index (LAI). As a result, the effects of the varieties and deficit irrigation on the radiation use efficiency (RUE) and grain yield of winter wheat were due to the vertical distribution of PAR in the winter wheat canopies. During the late growing season of winter wheat, irrespective of the irrigation regime, the RUE and grain yield of J were significantly (LSD, <I>P</I> < 0.05) higher than those of L. These results suggest that a combination of deficit irrigation and a suitable winter wheat variety should be applied in North China.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260008
Author(s):  
Muhammad Zain ◽  
Zhuanyun Si ◽  
Jinsai Chen ◽  
Faisal Mehmood ◽  
Shafeeq Ur Rahman ◽  
...  

To propose an appropriate nitrogen application mode and suitable drip irrigation lateral spacing, a field experiment was conducted during 2017–2018 and 2018–2019 growing seasons to quantify the different drip irrigation lateral spacings and nitrogen fertigation strategies effects on winter wheat growth, yield, and water use efficiency (WUE) in the North China Plain (NCP). The experiment consisted of three drip irrigation lateral spacing (LS) (40, 60, and 80 cm, referred to as D40, D60, and D80 respectively) and three percentage splits of nitrogen application modes (NAM) (basal and top dressing application ratio as 50:50 (N50:50), 25:75 (N25:75), and 0:100 (N0-100) respectively). The experimental findings depicted that yield and its components, and WUE were markedly affected by LS and NAM. Fertigation of winter wheat at N25:75 NAM notably (P<0.05) increased the grain yield by 4.88%, 1.83% and 8.03%, 4.61%, and WUE by 3.10%, 3.18% and 5.37%, 7.82%, compared with those at NAM N50:50 and N0:100 in 2017–2018 and 2018–2019 growing seasons, respectively. LS D40 appeared very fruitful in terms of soil moisture and nitrogen distribution, WUE, grain yield, and yield components than that of other LS levels. The maximum grain yield (8.73 and 9.40 t ha-1) and WUE (1.70 and 1.95 kg m-3) were obtained under D40N25:75 during both growing seasons, which mainly due to that all main yield components in D40N25:75 treatment, such as spikes per unit area, 1000-grain weight, and grains per spike were significantly higher as compared to other treatments. The outcomes of this research may provide a scientific basis of lateral spacing and nitrogen fertigation management for the production of drip-irrigated winter wheat in NCP.


2013 ◽  
Vol 61 (4) ◽  
pp. 279-292
Author(s):  
É. Szabó

The relationship between the yield, chlorophyll content and leaf area index of five winter wheat genotypes was investigated in two different growing seasons on chernozem soil. The results suggest that the genotype and the nutrient supply had a considerable influence on both the yield and the physiological traits, while the growing season modified the parameters in a significant manner. The results proved that the chlorophyll content and leaf area index had a direct influence on the yield; varieties developing larger leaf area and leaf chlorophyll content had higher yields even in different seasons, but the yield was significantly influenced by the decline in the chlorophyll content after flowering. It could be concluded that studying the chlorophyll content and leaf area values simultaneously during the more important phenological phases (especially from flowering to the early period of grain-filling) makes it possible to predict the yield from the trends.


Agriculture ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1077
Author(s):  
Ting Chen ◽  
Yonghe Zhu ◽  
Rui Dong ◽  
Minjian Ren ◽  
Jin He ◽  
...  

The relationship between the sowing patterns and yield performance is a valuable topic for food security. In this study, a novel belt uniform (BU) sowing pattern was reported, and a field experiment with four winter wheat cultivars was carried out over three consecutive growing seasons to compare the dry matter accumulation, harvest index (HI), grain yield and yield components under BU and line and dense (LD) sowing patterns [BU sowing with narrow (15 cm) spacing; BU sowing with wide (20 cm) spacing; LD sowing with wide (33.3 cm) row spacing; LD sowing with narrow (16.6 cm) row spacing]. Four cultivars produced a higher mean grain yield (GY), above-ground biomass (AGB) and spike number (SN) per m2 under the BU sowing patterns than the LD sowing patterns in all three growing seasons. However, yield stability under the BU sowing patterns did not increase with the improved grain yield. The HI did not change with sowing patterns, and the contribution of above-ground biomass to grain yield (84%) was more than 5-fold higher than that of HI (16%). Principal component and correlation analyses indicated that the grain yield was positively correlated with the aboveground biomass and SN, while the HI and 1000-grain weight were not correlated with grain yield. We concluded that (1) the novel BU sowing patterns achieved a higher yield potential in winter wheat but did not further improve yield stability; (2) increasing the dry matter accumulation without changing the HI drove improvements in the SN and grain number per spike, thus increasing grain yield.


Sign in / Sign up

Export Citation Format

Share Document