scholarly journals Impact of Different Nitrogen Levels to the Grain Yield and Yield Components of Some Corn (Zea mays L.) Hybrids

Author(s):  
Wisam Khald Sabri ◽  
Abdullah Oktem

Aims: The study was designed to elucidate the effect of different nitrogen (N) fertilizer levels on five different maize cultivars. Study Design:  A split plot experimental design in randomized complete blocks (RCBD) with three replicates. Arrangement of seven nitrogen levels and five single cross hybrids were compared. Main plots were nitrogen levels and subplots were varieties. Place and Duration of Study: College of Agricultural Engineering Sciences at the University of Duhok, Iraq. The study was undertaken fromMarch– August 2021. Methodology: At the present research, five single cross-hybrid corn varieties were used, which were: CADZ, DKC6050, DRACHMA, MYIMY and ZP6468D. Arrangement of seven nitrogen fertilizer levels were 0, 50, 100, 150, 200, 250 and 300 kg N ha−1. The following features were studied: plant height, leaf area index, thousand kernel weight, total grain yield, total chlorophyll, protein% and oil %.The collected data were projected to SAS software program for analysis. The significant differences between treatment means were calculated using Duncan’s multiple ranges. Results: It was reveal that there were significant effect of different nitrogen fertilizer levels, maize genotypes as well as the interaction of nitrogen and genotype of maize (P<.01) for plant height, leaf area index, 1000 kernel weight, total grain yield, total chlorophyll and protein %. However, There were no significant differences between different maize genotypes as well as different nitrogen fertilizer levels (P>.05) with oil %, but the interaction of nitrogen and genotype of maize was significant (P<.01). Conclusion: Increasing the amount of nitrogen had better effect on studied characteristics of different maize varieties, in which adding 300 kg nitrogen had optimum results. In considering the response of maize varieties to nitrogen, the best variety was DRACHMA genotype while the worst variety was CADZ genotype, however this hybrids was superior in some traits.

Author(s):  
I. Audu ◽  
R. Idris

A field experiment to study the growth and yield stability of maize varieties (Zea mays L.) to different rates of nitrogen fertilizer and cow dung in Mubi Adamawa State, Nigeria was conducted in 2014 and 2015 cropping seasons at the Food and Agricultural Organization/Tree crops Plantation (FAO/TCP) Farm of Faculty of Agriculture, Adamawa State University Mubi. Two maize varieties; viz. Quality Protein Maize (QPM) and Extra Early White (EEW) were selected for sowing. They were assigned to the main plots and nitrogen with cow dung assigned to the subplots in a factorial combination with nitrogen at the rates of 0, 60 and 120 kg N ha-1 and cow dung at 0, 1- and 2-ton ha-1 in split plot design. Data were collected on plant height, leaf area per plant, leaf area index and grain yield per hectare. Data collected were subjected to analysis of variance and treatment means were separated using Duncan Multiple Range Test. The result showed that EEW had the highest plant height (190.77 cm), higher leaf area per plant (535.6 cm2) and leaf area index (0.40 cm) than QPM. The effect of nitrogen fertilizer on the growth and yield parameters increased as the nitrogen fertilizer was increased. 120kg N ha-1 gave the highest plant height (195.68 cm) and grain yield (5658.3 kg). The control plot produced the least; 164.77 cm (plant height) and 2662.50 kg ha-1 (grain yield). Application of 1ton ha-1 cow dung exhibited the highest plant height, (95.00 cm), leaf area per plant (518.91 cm2) and leaf area index (0.37 cm). There was an interaction of variety with nitrogen on plant height and grain yield. High interaction of variety with cow dung on plant height and leaf area per plant was recorded. There was an interaction of nitrogen with cow dung on plant height, leaf area per plant and leaf area index. However, there was an interaction of variety with nitrogen and cow dung on plant height, leaf area per plant and leaf area index. Application of 120 kg N ha-1 significantly increased the yield of QPM maize along with 2-ton ha-1 of cow dung.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Tolera Abera ◽  
Tolessa Debele ◽  
Dagne Wegary

Yield of maize hybrids could be low when grown below optimum management practices. Use of improved varieties and optimum nitrogen fertilizer application practices are unlocking the high yielding potential of hybrids maize. With these in view, a field experiment was executed on farmers’ field to determine the effect of varieties and nitrogen fertilizer rate on yield and yield components of maize in two cropping seasons. It is laid out with randomized complete block design in factorial arrangement with three replications. Five maize varieties (BH-540, BH-543, BH-661, BH-660, and BH-140) as main factor and two levels of nitrogen (55 and 110 Kg N ha−1) as subfactor were used with one maize variety (BH-543) without fertilizer as control. Leaf area and leaf area index of maize varieties were significantly affected by application of nitrogen fertilizer rates. Interaction of maize varieties with nitrogen fertilizer rates significantly affected all yield and yield components of maize. Application of half and full recommended nitrogen fertilizer produced mean grain yield advantages of 31 and 41% over control. Therefore, application of half and full recommended nitrogen fertilizer for improved maize varieties has significantly improved grain yield and recommended for maize production in midaltitude area of western Ethiopia.


Author(s):  
Ndzimandze Sibonginkosi ◽  
Mabuza Mzwandile ◽  
Tana Tamado

Maize is staple food and the most cultivated crop in Eswatini. However, its yield is very low partly due to use of non-optimum plant density for different maturity group maize varieties. Thus, an experiment was conducted at Luyengo, Middleveld of Eswatini during the 2018/2019 cropping season. The experiment consisted of factorial combinations of two varieties [SC 403 (early maturing) and PAN 53 (medium maturing)] and three plant densities (44444 plants/ha, 50000 plants/ha, 57143 plants/ha) in randomised complete block design in three replications. Results showed that medium maturing maize variety PAN 53 had higher leaf area, leaf area index, plant height, cob height (139.4 cm), days to 90% anthesis (69 days), dry biomass, thousand kernels mass (374.0 g), grain yield (43.1 t/ha), and stover mass (59.8 t/ha) than the early maturing variety SC 403. With respect to the effect of plant density, as the plant density increased from 44444 to 57143 plants/ha, leaf area, dry biomass at V12 and R5 growth stages, number of cobs per plant, grain yield, stover mass, and thousand kernels mass (g) were decreased while the leaf area index was increased. The interaction effects of variety and plant density were not significant on all the parameters recorded. Thus, it can be concluded that medium maturing variety PAN 53 and plant density of 44444 plants/ha (90 cm ´ 25 cm) are best options to maximum productivity of maize in the study area. However, it is recommended that the experiment be repeated with inclusion of more varieties and densities to reach at more conclusive recommendation.


2018 ◽  
Vol 10 (12) ◽  
pp. 4858 ◽  
Author(s):  
Yunlong Zhai ◽  
Quanzhong Wu ◽  
Guodong Chen ◽  
Hailin Zhang ◽  
Xiaogang Yin ◽  
...  

In North China, row spacing is the most common planting pattern used for winter wheat. Currently, there are three sowing and tillage methods for row spacing: rotary tillage sowing with straw return (RTS), subsoil tillage sowing with straw return (DTS), and no-tillage sowing with straw return (NTS). Recently, Hao proposed a new sowing pattern called uniform broadcast sowing with straw return (BSS) which could increase winter wheat yield. In this research, a field experiment was conducted during the growing seasons in 2011–2012 and 2012–2013. The winter wheat (Triticum aestivum L.) variety Jimai 22 was sowed with the four seeding and tillage methods—RTS, DTS, NTS, and BSS—at the China Agriculture University Wuqiao experimental station in the North China Plain. After tillage sowing and determining the sowing efficiency, the effective cover ratio of the seeds was measured, and the emergence ratio was calculated after emergence. In the two growing seasons, the growth and development stages were recorded. The dry matter accumulation (DMA), the yield, and the yield components (spikes per hectare, kernels per spike, and kernel weight) were also determined. We also measured the canopy structure leaf area index (LAI) and the stand uniformity. The results showed that BSS had the lowest emergence rate and lowest plant stands when compared with the other treatments. However, BSS had the highest grain yield at 7599.0 kg·ha−1 and 9763.3 kg·ha−1, which was 11.55, 16.17, 20.16% and 13.01, 15.68, 21.88% higher than DTS, RTS, and NTS in the 2011/2012 and 2012/2013 growing seasons, respectively. The improved grain yield of BSS was due to the increased productive tillers per hectometer-squared, which was attributed to the higher stand uniformity. More importantly, the increased tillers per hectare and grain yield were not accompanied by a reduction in grain number per spike or grain weight. The stand uniformity could facilitate canopy construction and population architecture and result in more even sunlight distribution, increased leaf area index (LAI) and sunlight interception, and enhanced photosynthetic activity. The stand uniformity also could increase both the pre-anthesis and post-anthesis DMA and promote the harvest index (HI). This study indicates that BSS is the most suitable sowing method for winter wheat production in North China.


2006 ◽  
Vol 46 (3) ◽  
pp. 387 ◽  
Author(s):  
M. M. Muraya ◽  
C. M. Ndirangu ◽  
E. O. Omolo

This study was conducted at Egerton University, Njoro, Kenya for 2 growing seasons, 2001 and 2002. A diallel cross, without reciprocal crossings, involving 7 maize S1 lines: KSTP001, KSTP003, KSTP004, KSTP005, KSTP008, E2 and E3 was used to study the heterosis and inheritance of days to 50% flowering, plant height, ear height, leaf angle, number of leaves per plant, leaf area index, cob length, cob diameter, number of lines per cob, number of seeds per line, 100-grain weight and grain yield. A randomised complete block design with 3 replicates was used. Analysis of variance was conducted on the data generated at 0.05 significant level using MSTAT. The results showed that general combining ability (GCA) and specific combining ability (SCA) was significant (P<0.05) for all traits under study, suggesting existence of both additive and non-additive gene effects for the traits. However, GCA : SCA ratio was >1 for all traits except cob diameter and 100 seed weight, indicating preponderance of additive gene effects for inheritance of these traits. The study identified KSTP003 as the best combiner for most of the traits, while KSTP001 and E3 was the best combination for most traits. KSTP004 and E3 was good combiner for grain yield. Hybrid KSTP005 × E3 was the best cross for grain yield. KSTP003 × E2 was the best cross for reduction of leaf angle thus good source for erectophile canopies in a hybridisation program. Heterosis estimates showed that heterosis was more important in grain yield, yield components, plant height, number of leaves per plant and, leaf area index than other traits studied. Most of traits studied had a positive and significant (P≤0.01), while all traits studied except days to 50% flowering had a positive and significant (P≤0.01) genotypic correlations. It is recommended that based on their combining ability the lines be recombined to form synthetic maize varieties which can be released both as a variety or used for further improvement using recurrent selection. The lines which combine well for reduction in leaf angle from vertical should be utilised to develop erective maize varieties.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 313
Author(s):  
Guoqiang Zhang ◽  
Bo Ming ◽  
Dongping Shen ◽  
Ruizhi Xie ◽  
Peng Hou ◽  
...  

Achieving optimal balance between maize yield and water use efficiency is an important challenge for irrigation maize production in arid areas. In this study, we conducted an experiment in Xinjiang China in 2016 and 2017 to quantify the response of maize yield and water use to plant density and irrigation schedules. The treatments included four irrigation levels: 360 (W1), 480 (W2), 600 (W3), and 720 mm (W4), and five plant densities: 7.5 (D1), 9.0 (D2), 10.5 (D3), 12.0 (D4), and 13.5 plants m−2 (D5). The results showed that increasing the plant density and the irrigation level could both significantly increase the leaf area index (LAI). However, LAI expansion significantly increased evapotranspiration (ETa) under irrigation. The combination of irrigation level 600 mm (W3) and plant density 12.0 plants m−2 (D4) produced the highest maize yield (21.0–21.2 t ha−1), ETa (784.1–797.8 mm), and water use efficiency (WUE) (2.64–2.70 kg m−3), with an LAI of 8.5–8.7 at the silking stage. The relationship between LAI and grain yield and evapotranspiration were quantified, and, based on this, the relationship between water use and maize productivity was analyzed. Moreover, the optimal LAI was established to determine the reasonable irrigation level and coordinate the relationship between the increase in grain yield and the decrease in water use efficiency.


Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 76
Author(s):  
Aloysius Beah ◽  
Alpha Y. Kamara ◽  
Jibrin M. Jibrin ◽  
Folorunso M. Akinseye ◽  
Abdullahi I. Tofa ◽  
...  

This paper assessed the application of the Agricultural Production Systems sIMulator (APSIM)–maize module as a decision support tool for optimizing nitrogen application to determine yield and net return of maize production under current agricultural practices in the Nigeria savannas. The model was calibrated for two maize varieties using data from field experiments conducted under optimum conditions in three locations during the 2017 and 2018 cropping seasons. The model was evaluated using an independent dataset from an experiment conducted under different nitrogen (N) levels in two locations within Southern and Northern Guinea savannas. The results show that model accurately predicted days to 50% anthesis and physiological maturity, leaf area index (LAI), grain yield and total dry matter (TDM) of both varieties with low RMSE and RMSEn (%) values within the range of acceptable statistics indices. Based on 31-year seasonal simulation, optimum mean grain yield of 3941 kg ha−1 for Abuja, and 4549 for Kano was simulated at N rate of 120 kg ha–1 for the early maturing variety 2009EVDT. Meanwhile in Zaria, optimum mean yield of 4173 kg ha–1 was simulated at N rate of 90 kg ha−1. For the intermediate maturing variety, IWDC2SYNF2 mean optimum yields of 5152, 5462, and 4849 kg ha−1, were simulated at N application of 120 kg ha−1 for all the locations. The probability of exceeding attainable mean grain yield of 3000 and 4000 kg ha−1 for 2009EVDT and IWDC2SYNF2, respectively would be expected in 95% of the years with application of 90 kg N ha−1 across the three sites. Following the profitability scenarios analysis, the realistic net incomes of US$ 536 ha–1 for Abuja, and US$ 657 ha−1 for Zaria were estimated at N rate of 90 kg ha−1 and at Kano site, realistic net income of US$ 720 ha–1was estimated at N rate of 120 kg ha−1 for 2009EVDT.For IWDC2SYNF2, realistic net incomes of US$ 870, 974, and 818 ha−1 were estimated at N application of 120 kg ha−1 for Abuja, Zaria, and Kano respectively. The result of this study suggests that 90 kg N ha−1 can be recommended for 2009EVDT and 120 kg N ha–1 for IWDC2SYNF2 in Abuja and Zaria while in Kano, 120 kg N ha−1 should be applied to both varieties to attain optimum yield and profit.


2017 ◽  
Vol 14 (2) ◽  
pp. 155-160
Author(s):  
MAR Sharif ◽  
MZ Haque ◽  
MHK Howlader ◽  
MJ Hossain

The experiment was conducted at the field laboratory of the Patuakhali Science and Technology University, Patuakhali, Bangladesh during the period from November, 2011 to March 2012 under the tidal Floodplain region to find out optimum sowing time for the selected three cultivars (BARI Sharisha-15, BINA Sharisha-5 and BARI Sharisha-9). There were four sowing dates viz. 30 November, 15 December, 30 December and 15 January. Significant variations due to different sowing dates were observed in plant height, total dry matter, leaf area index, number of siliqua plant-1, seeds silique-1, 1000-grain weight, grain yield and HI. Results showed that the highest grain yield (1.73 t ha-1) was obtained from the first sowing (30 November) with BINA Sharisha-5 and it was significantly different from the yields of all other combination.J. Bangladesh Agril. Univ. 14(2): 155-160, December 2016


1982 ◽  
Vol 18 (1) ◽  
pp. 93-100 ◽  
Author(s):  
S. U. Remison ◽  
E. O. Lucas

SUMMARYTwo maize cvs, FARZ 23 and FARZ 25, were grown at three densities (37,000, 53,000 and 80,000 plants/ha) in 1979 and 1980. Leaf area index (LAI) increased with increase in plant population and was at a maximum at mid-silk. Grain yield was highest at 53,000 plants/ha. There was no relation between LAI and grain yield but there was a positive correlation between LAI and total dry matter yield.


2021 ◽  
Vol 34 (4) ◽  
pp. 780-790
Author(s):  
PAULO VINICIUS DEMENECK VIEIRA ◽  
PAULO SÉRGIO LOURENÇO DE FREITAS ◽  
ANDRÉ LUIZ BISCAIA RIBEIRO DA SILVA ◽  
ANA CLAUDIA SOSSAI SOUZA ◽  
JULIANA MARQUES VORONIAK

ABSTRACT Sorghum is a commonly grown plant in the Central-West region of Brazil as a second crop; however, it is grown almost exclusively as a second crop after maize in the state of Paraná (South region). The growth of sorghum crops is an option for areas or times in which the growth of maize crops can be risky. Thus, the objective of this work was to evaluate the agronomic characteristics of eight sorghum hybrids (ADV-123, ADV-114, 1G100, 50A10, 1G244, 50A40, 50A50, and 1G282) grown in three sowing times in two agricultural years: 2014 (February 20, March 02, and March 03) and 2015 (February 09, February 19, and March 01), and four maize hybrids in 2014 (DKB-330-Pro, P-3431-HX, Formula-TL, and AG-9010-Pro) and five maize hybrids in 2015 (DKB-330-Pro, P-3431-HX, Formula-TL, DKB-275-Pro, and DKB-290-Pro), in the same sowing times used for sorghum. A randomized complete block experimental design with a split-plot factorial arrangement was used, with the sowing times in the plots and the hybrids in the sub-plots. The variables evaluated were: number of days from sowing to flowering, leaf area index, 1,000-grain weight, grain yield, number of spikelets per panicle, for the sorghum crop; and number of rows per ear and number of grains per row, for the maize crop. The comparison between the two crops showed that the sorghum maintained higher production stability in the different sowing times.


Sign in / Sign up

Export Citation Format

Share Document