scholarly journals The Evaluation of Single-Family Detached Housing Units in terms of Integrated Photovoltaic Shading Devices: The Case of Northern Cyprus

2019 ◽  
Vol 11 (3) ◽  
pp. 593 ◽  
Author(s):  
John Ogbeba ◽  
Ercan Hoskara

In this paper, we evaluate passive and active strategies that can be used in solving the heating problems in the residential sector of Northern Cyprus. In doing so, we propose the use of photovoltaics as a shading device (PVSD). PVSD is known to produce clean energy from solar radiation and it also reduces the energy consumed for cooling. We use an empirical method to evaluate the performance of a typical family detached dwelling in Famagusta, Cyprus. The simulation result derived from the study indicates that the strategic use of PVSDs for openings oriented towards the east, west, and south can reduce its energy consumption by almost 50% in three months of the year and cut down up to 400 kWh of energy consumption through the year, thus raising the comfort level of the building by about 20%. It will also generate nearly 2800 W that can provide up to 50% of the electricity demand.

2013 ◽  
Vol 816-817 ◽  
pp. 875-881 ◽  
Author(s):  
R. Sairam ◽  
P.L. Raviteja ◽  
A. Naresh

There are many reasons to control the amount of sunlight admitted into a building. In warm, sunny climates excess solar gain may result in high cooling energy consumption. In cold and temperate climates winter sun entering south-facing windows can positively contribute to passive solar heating; and in nearly all climates controlling and diffusing natural Illumination will improve day lighting. A Well-designed sun control and shading devices can dramatically reduce building peak heat gain and cooling requirements and improve the Natural lighting quality of building interiors. In this casestudy Shading Devices commonly found in India are evaluated to find Optimized Shading Device for Hot-Dry Climate of South India


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Seok-Hyun Kim ◽  
Kyung-Ju Shin ◽  
Hyo-Jun Kim ◽  
Young-Hum Cho

In South Korea, the evaluation criteria for installing shading devices are defined by regulations, but the standards of design methods are not clearly established. The installation of shading devices has become mandatory for some public buildings due to revised regulations. Therefore, a design of horizontal shading device is required, and indoor environmental problems which may occur due to their installation should also be taken into consideration. This research aimed to propose a design which takes into account the energy consumption which may occur if the horizontal shading device is installed and suggests an improved design method of horizontal shading devices when they are installed. Consequently, it was confirmed that as the protrusion of the horizontal shading device becomes longer, the incoming daylight is reduced and the indoor intensity of illumination becomes lower, and thus more lighting energy may be consumed in a room where the shading device is installed than in the one where it is not. Therefore, annual energy consumption was calculated by applying the lighting control and it was found that the total energy consumption decreased by the reduction of air-conditioning and fans and lighting energy consumption.


2018 ◽  
Vol 2 (3) ◽  
pp. 136
Author(s):  
Amr Soliman ElGohary ◽  
Shereen Omar Khashaba

Existing buildings are the massive percentage of the building stock, and therefore, are the key to improving efficiency; buildings account for an enormous share of the climate change crisis, and approximately 40% of the world total energy consumption (McArthur & Jofeh, 2015). The Egyptian stock of buildings includes about 12 million buildings. 60% of these buildings are residential. The final electricity consumption of the residential buildings in 2010 was 51370 GWh and increased in 2014 to reach 62441 GWh. Thus the share of total energy consumption was 18.8% in 2010 and increased to reach 21.55% in 2014 ("Technology Roadmap - Energy efficient building envelopes.", 2013). Therefore, the residential sector plays an important role in the mitigation of energy consumption crisis, which is expected to increase. The research field and initiatives in Egypt on the green buildings and green buildings retrofits are rare and, if existing, are weakly applied. Unlike in developed countries, there is a large research on building retrofits, e.g., the Residential Property Assessed Clean Energy (R-PACE) program and the weatherization assistance program (WAP) of the department of energy (DOE). Both are examples of the incentives to green building initiatives globally. This paper discusses the challenge of greening the existing residential buildings in Egypt by demonstrating an analysis of the motives and the barriers to applying green measures in the Egyptian market. The research methodology comprises the analytical-comparative method. In the analytical part; the paper identifies the current situation of the residential sector energy consumption in Egypt, and the benefits of greening existing buildings for tenants, investors, and owners. In the comparative part, the current situation of Egypt's Green Market Business Case is compared with the international one, discussing the challenge of greening the residential buildings. The paper summarizes the opportunities to improve the building energy efficiency, incentives, and policies that are developed to address significant financial and technical awareness to building efficiency. These policies will help enable critical market actors to make decisions to promote energy efficiency in existing buildings.


2021 ◽  
pp. 127-139
Author(s):  
Eusébio Conceição ◽  
João Gomes ◽  
Maria Manuela Lúcio ◽  
Hazim Awbi

This work presents a study of a numerical building dynamic simulation in the development of a horizontal shading device passive solution applied in a university canteen. The used building dynamic simulation software, that simulates simultaneously a building or groups of buildings with complex topologies, in transient conditions, considers the solar radiation, the HVAC system, glass radiative proprieties, radiative heat exchanges, thermal solutions, thermal comfort of occupants, indoor air quality, among others properties. The development of efficient external horizontal shading devices is made by a numerical model that uses the sun's trajectory and its position in relation to the windows where it falls. The canteen is constituted by three levels and is divided in 37 spaces. In the numerical simulation, 100 transparent surfaces and 773 opaque surfaces are considered. Special attention is given in the students’ main canteen, professors’ main canteen, specialized canteen and university bar. The simulation is made, in summer conditions, considered the selected spaces without and with horizontal shading devices placed above their windows. In the simulation, the occupancy and the implemented ventilation system are considered. Regarding to the obtained results the use of horizontal shading devices can reduce the air temperature range and improve the thermal comfort level that the occupants are subjected in some of the analyzed spaces.


2014 ◽  
Vol 136 (2) ◽  
Author(s):  
Akash Samanta ◽  
Saibal Saha ◽  
Jhumoor Biswas ◽  
Arindam Dutta

The aim of this paper is to demonstrate the role of shading devices in the improvement of energy efficiency of buildings in hot dusty and dry tropical regions. The effect of shading in reducing the energy consumption of buildings is investigated by considering a case study of a guest house chosen because of its logical design approach to reduce thermal loads. The building plan, measurements, and details on schedules of building usage activities have been used as input data to a simulation program of the building. Based on the inputs, a thermal building model is developed in trnsys 17 simulation program and the effect of external shading on the building has been explored. It is seen that building design and orientation determine the effectiveness of shading. Movable shading over windows has a significant impact reducing temperatures by about 1.5 °C in each thermal zone. The difference in thermal energy loads of the building calculated from modeling simulations of the base case and the control case utilizing movable shading devices is approximately 8%. A programmable logic controllers (PLC)-based movable shading device has been designed to facilitate optimal shading control. The results enable us to draw inferences regarding the additional contribution of the shading factor in energy saving techniques for buildings.


Proceedings ◽  
2020 ◽  
Vol 38 (1) ◽  
pp. 17
Author(s):  
Lopez-Cabeza ◽  
Galán-Marín ◽  
Rivera-Gómezs

The design of more sustainable buildings is one of the main concerns of our society given the necessity to reduce energy consumption to reduce climate change. Incorporate passive strategies in buildings should be the first step because of its zero energy consumption. One of the most used passive strategies in the Mediterranean Climate is the use of inner courtyards as a tempering element of buildings. The performance of these courtyards has been traditionally improved by installing shading devices such as canvas. The aim of this study is to quantify the effect of the shading element installed in two courtyards with different geometries in the south of Spain by monitoring the temperature in the courtyards and the outdoor during warm and extremely hot days.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Md. Jewel Rana ◽  
Md. Rakibul Hasan ◽  
Md. Habibur Rahman Sobuz

PurposeApplication of appropriate shading device strategies in buildings can reduce direct solar heat gain through windows as well as optimize cooling and artificial lighting load. This study investigates the impact of common shading devices such as overhangs, fins, horizontal blinds, vertical blinds and drapes on energy consumption of an office building and suggests energy efficient shading device strategies in the contexts of unique Bangladeshi subtropical monsoon climate.Design/methodology/approachThis research was performed through the energy simulation perspective of a prototype office building using a validated building energy simulation tool eQUEST. Around 100 simulation patterns were created considering various types of shading devices and building orientations. The simulation results were analysed comprehensively to find out energy-efficient shading device strategies.FindingsOptimum overhang and fin height is equal to half of the window height in the context of the subtropical climate of Bangladesh. South and West are the most vulnerable orientations, and application of shading devices on these two orientations shows the highest reduction of cooling load and the lowest increment of lighting load. An existing building was able to save approximately 7.05% annual energy consumption by applying the shading device strategies that were suggested by this study.Originality/valueThe shading device strategies of this study can be incorporated into the Bangladesh National Building Code (BNBC) as new energy-efficient building design strategies because the BNBC does not have any codes or regulations regarding energy-efficient shading device. It can also be used as energy-efficient shading device strategies to other Southeast Asian countries with similar climatic contexts of Bangladesh.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3249 ◽  
Author(s):  
Jessica Settino ◽  
Cristina Carpino ◽  
Stefania Perrella ◽  
Natale Arcuri

This study tackles the analysis of fixed external solar shading systems. The geometry of a building and of the shading system has been parametrically defined and a genetic optimization analysis has been carried out to identify an architectural solution that would allow the increase of energy savings, through a suitable window-to-wall ratio and an accurate design of the shading device. A multi-objective analysis has been performed with the aim of minimizing the energy consumption for space heating, cooling and artificial lighting, while ensuring the visual comfort of the occupants. The main goal of the study is to explore the influence of climatic context on the optimal design of shading devices. The analysis has been performed for three different latitudes across Europe. In all analyzed cases, a reduction of the annual energy consumption could be achieved, up to 42% if the optimal shading configuration is used. Moreover, the possibility of integrating the shading system with photovoltaic (PV) panels has been considered and the electricity production has been estimated.


2019 ◽  
Vol 111 ◽  
pp. 06052
Author(s):  
Seok-Hyun Kim ◽  
Soo Cho ◽  
Young-Hum Cho

In South Korea, the evaluation criteria for the shading devices installation are defined by regulations, but the standards of design methods are not clearly established. The installation of shading device is used to solar control in building. It has become mandatory for some public buildings due to revised regulations. Generally this device mean is horizontal shading at upper window. Therefore, a design of horizontal shading device which takes into account the energy consumption of the building is required, and indoor environmental problems which may occur due to the installation of them should also be taken into consideration. This research studied to propose a design which takes into account the energy consumption which may occur if the horizontal shading device is installed, and suggest an improved design method of horizontal shading devices on the basis of the analysis of the problems that may occur when they are installed. Consequently, it was confirmed that as the length of the horizontal shading device becomes longer, the incoming daylight is reduced and the indoor intensity of illumination becomes lower, and thus, more lighting energy may be consumed in a room where the shading device is installed than in the one where it is not. Therefore, annual energy consumption was calculated by applying the lighting control and it was found that the total energy consumption decreased as a result of the reduction in energy consumption for air conditioning and fans and further decrease in lighting energy consumption.


2021 ◽  
Vol 9 (1) ◽  
pp. 28-39
Author(s):  
Sara Dh. Bahaadin ◽  
Binaee Y. Raof ◽  
Hendren Abdulrahman

High-rise residential buildings are increasing worldwide, including cities in the Kurdistan Region of Iraq. Therefore, creating sustainable environments in and around these residential buildings are becoming an important problem. Improving energy efficiency in buildings has received critical attention worldwide. Countries have developed national sustainability strategies that lead to the lower energy consumption while maintaining comfort, reducing energy consumption, and minimizing harmful emissions. In this paper, an analysis of the impact of external shading devices in high-rise residential buildings on energy consumption of a 13-storey building in Sulaimani city is studied. The study is focused on fixed shading elements, explaining the influence of the design of vertical and horizontal shading devices on the total energy consumption of this type of building. The results show that both a single fixed horizontal blind with a depth of 20 cm and a triple vertical shading with the same depth are considered useless. The reduction in cooling loads by two fixed horizontal louvers almost doubled compared to a single fixed horizontal shading with 20 cm. Moreover, triple fixed horizontal louvers with 40 cm have almost the same effect on reducing cooling loads as triple fixed louvers with 60 cm. On the other hand, a triple fixed horizontal shading device with 60 cm has twice the effect on reducing annual cooling loads as a triple fixed vertical shading device with 60 cm.


Sign in / Sign up

Export Citation Format

Share Document