scholarly journals The Concentrations and Removal Effects of PM10 and PM2.5 on a Wetland in Beijing

2019 ◽  
Vol 11 (5) ◽  
pp. 1312 ◽  
Author(s):  
Chunyi Li ◽  
Yilan Huang ◽  
Huanhuan Guo ◽  
Gaojie Wu ◽  
Yifei Wang ◽  
...  

Particulate matter (PM) is an essential source of atmospheric pollution in metropolitan areas since it has adverse effects on human health. However, previous research suggested wetlands can remove particulate matter from the atmosphere to land surfaces. This study was conducted in the Hanshiqiao Wetland National Nature Reserve in Beijing during 2016. The concentrations of PM10 and PM2.5 on a wetland and bare land in the park, as well as metrological data, were collected during the whole year. Based on the observed data, removal efficiency of each land use type was calculated by empirical models and the relationships between concentrations and metrological factors were also analyzed. The results indicated that: (1) In general, the PM10 and PM2.5 concentrations on the bare land surface were higher than those on the wetland surface, in both of which the highest value appeared at night and evening, while the lowest value appeared near noon. In terms of season, the average concentration of PM10 was higher in winter (wetland: 137.48 μg·m−3; bare land: 164.75 μg·m−3) and spring (wetland: 205.18 μg·m−3; bare land: 244.85 μg·m−3) in general. The concentration of PM2.5 on the wetland surface showed the same pattern, while that on the bare land surface was higher in spring and summer. (2) Concentrations of PM10 and PM2.5 were significantly correlated with the relative humidity (p < 0.01) and inversely correlated with wind speed (p < 0.05). The relationship between PM10 and PM2.5 concentrations and temperature was more complicated—it showed a significantly negative correlation (p < 0.01) between them in winter and spring, however, the correlation was insignificant in autumn. In summer, only the correlation between PM10 concentration and temperature on the wetland surface was significant (p < 0.01). (3) The dry removal efficiency of PM10 was greater than that of PM2.5. The dry removal efficiencies of PM10 and PM2.5 followed the order of spring > winter > autumn > summer on the wetland. This study seeks to provide practical measures to improve air quality and facilitate sustainable development in Beijing.

Author(s):  
Chunyi Li ◽  
Yilan Huang ◽  
Huanhuan Guo ◽  
Gaojie Wu ◽  
Yifei Wang ◽  
...  

Particulate matter is a severe source of atmospheric pollution in urban cities, and it has adverse effects on human health. This study was conducted during the whole year of 2016 to monitor the concentrations of PM10 and PM2.5 on the Beijing Hanshiqiao wetland and bare land in Beijing to analyze their correlations with meteorological factors and compare the removal efficiency between two land surface types. The results indicated that (1) the PM10 and PM2.5 concentrations on the bare land were higher than those on wetland as a whole, reaching the highest value both at night and dusk and the lowest value near noon. The average concentration of PM10 was higher in winter (wetland: 137.48 &mu;g&middot;m-3; bare land: 164.75 &mu;g&middot;m-3) and spring (wetland: 205.18 &mu;g&middot;m-3; bare land: 244.85 &mu;g&middot;m-3) and the concentration of PM2.5 on the wetland also reached the higher value in winter and spring with the average of 84.52 &mu;g&middot;m-3 and 98.98 &mu;g&middot;m-3, whereas, it was higher in spring and summer on the bare land; (2) concentrations of PM10 and PM2.5 were significantly positively affected by the relative humidity (P &lt; 0.01) and negatively influenced by wind speed (P &lt; 0.05). The relationship between PM10 and PM2.5 concentrations and temperature was found complicated: it showed a significantly negative correlation (P &lt; 0.01) in winter and spring and was insignificant in autumn, but in summer, only the correlation between the PM10 concentration and temperature on wetland was significant (P &lt; 0.01); (3) the removal efficiencies of PM10 and PM2.5 followed the order of spring &gt; winter &gt; autumn &gt; summer on the wetland, and the removal efficiency of PM10 was greater than that of PM2.5. This study is aim to provide practical measures to improve the air quality and facilitate sustainable development in Beijing.


MAUSAM ◽  
2021 ◽  
Vol 68 (1) ◽  
pp. 111-118
Author(s):  
SUNIL KUMAR PESHIN ◽  
PRIYANKA SINHA ◽  
AMIT BISHT

Diwali is one of the major and most important festivals celebrated all over India which falls in the period late October to early November every year. It is associated with burning of firecrackers especially during the night of Diwali day that leads to degradation of air quality that lasts for a longer duration of time. Firecrackers on burning releases huge amount of trace gases such as NOx, CO, SO2 and O3 and huge amount of aerosols and particulate matter. The present study focuses on the influence of firecrackers  emissions on surface ozone(O3) ,oxides of nitrogen (NOx) and particulate matter (PM10 and PM2.5)concentration over the capital urban metropolis of India, New Delhi during Diwali festivity period from 2013-2015. A sharp increase is observed in surface ozone, NOx and particulate matter concentration during the Diwali day as compared to control day for 2013 to 2015 which is mainly attributed to burning of firecrackers. However the average concentration levels of the  gaseous pollutants and particulate matter (PM10 and PM2.5) on Diwali day exhibited a decline in 2015 and 2014 as compared to 2013 due to increase in  awareness campaigns among public and increased cost of firecrackers.  


Author(s):  
Małgorzata Kowalska ◽  
Michał Skrzypek ◽  
Michał Kowalski ◽  
Josef Cyrys ◽  
Niewiadomska Ewa ◽  
...  

The relationship between the worsening of air quality during the colder season of the year and respiratory health problems among the exposed population in many countries located in cold climates has been well documented in numerous studies. Silesian Voivodeship, a region located in southern Poland, is one of the most polluted regions in Europe. The aim of this study was to assess the relationship between daily concentration of particulate matter (PM: PM2.5 and PM10) in ambient air and exacerbations of respiratory diseases during the period from 1 January 2016 to 31 August 2017 in the central agglomeration area of Silesian Voivodeship. The study results confirmed a significant increase of daily fine particulate matter concentration in ambient air during the cold season in Silesian Voivodeship with a simultaneous increase of the number of outpatient visits and hospitalizations due to respiratory diseases. The moving average concentration was better suited for the modelling of biological response as a result of PM2.5 or PM10 exposure than the temporal lag of health effects. Each increase of dose expressed in the form of moving average concentration over a longer time leads to an increase in the daily number of respiratory effects. The highest risk of hospitalization due to respiratory diseases was related to longer exposure of PM expressed by two to four weeks of exposure; outpatient visits was related to a shorter exposure duration of 3 days.


2021 ◽  
Vol 13 (10) ◽  
pp. 5402
Author(s):  
Azliyana Azhari ◽  
Nor Diana Abdul Halim ◽  
Anis Asma Ahmad Mohtar ◽  
Kadaruddin Aiyub ◽  
Mohd Talib Latif ◽  
...  

Particulate matter (PM) is one of the major pollutants emitted by vehicles that adversely affect human health and the environment. This study evaluates and predicts concentrations and dispersion patterns of PM10 and PM2.5 in Kuala Lumpur city centre. The OML-Highway model calculates hourly time series of PM10 and PM2.5 concentrations and distribution caused by traffic emissions under different scenarios; business as usual (BAU) and 30% traffic reduction to see the impact of traffic reduction for sustainable traffic management. Continuous PM10 and PM2.5 data from a nearby monitoring station were analysed for the year 2019 and compared with modelled concentrations. Annual average concentration at various locations of interest for PM10 and PM2.5 during BAU runs were in the ranges 41.4–65.9 µg/m3 and 30.4–43.7 µg/m3 respectively, compared to during the 30% traffic reduction run ranging at 40.5–59.5 µg/m3 and 29.9–40.3 µg/m3 respectively. The average concentration of PM10 and PM2.5 at the Continuous Air Quality Monitoring Station (CAQMS) was 36.4 µg/m3 and 28.2 µg/m3 respectively. Strong correlations were observed between the predicted and observed data for PM10 and PM2.5 in both scenarios (p < 0.05). This research demonstrated that the reduction of traffic volume in the city contributes to reducing the concentration of particulate matter pollution.


Author(s):  
Ira Setiawati ◽  
Rahyani Ermawati ◽  
Kitai Kang ◽  
Insoo Chang ◽  
Kihwan Hong ◽  
...  

The increasingly rapid industrial development has produced pollutants in the form of gases and particles polluting the atmosphere. One of them is the steel industry where the majority of the air pollutants produced is particulate matter. Monitoring the air quality of particulate matter needs to be done routinely to identify and control the effects of air pollution somewhere. The purpose of this study is to identify and analyze particulate matter (PM10 and PM2.5) in the steel industry area in Cilegon, Indonesia. Ambient particulate matter is sampling by low-volume Sequential Particulate Matter (PM) Sampler with flow rate 5-20 L/minute for 24 hours per day in 4 months from September 2018 to January 2019. The results of identification and analysis of PM10 and PM2.5 in the steel industry area, Cilegon, Indonesia showed concentrations that varied greatly depending on sampling location conditions, with an average concentration range of 89.38 - 141.13 µg/m3 for PM10 and 21.74 - 50.69 µg/m3 for PM2.5.


2017 ◽  
Vol 2017 (67) ◽  
pp. 31-37
Author(s):  
O. Turos ◽  
◽  
T. Maremukha ◽  
I. Kobzarenko ◽  
A. Petrosian ◽  
...  

2000 ◽  
Author(s):  
N. Esmen ◽  
T. Hall ◽  
D. Johnson ◽  
R. Lynch ◽  
M. Phillips ◽  
...  

2019 ◽  
Vol 18 (1) ◽  
pp. 76-80 ◽  
Author(s):  
Kichul Kim ◽  
Pil-Ju Park ◽  
Soomi Eo ◽  
Seungmi Kwon ◽  
Kwangrae Kim ◽  
...  

2018 ◽  
Vol 24 (3) ◽  
pp. 341-358 ◽  
Author(s):  
Xiaotong Ji ◽  
Yingying Zhang ◽  
Guangke Li ◽  
Nan Sang

Recently, numerous studies have found that particulate matter (PM) exposure is correlated with increased hospitalization and mortality from heart failure (HF). In addition to problems with circulation, HF patients often display high expression of cytokines in the failing heart. Thus, as a recurring heart problem, HF is thought to be a disorder characterized in part by the inflammatory response. In this review, we intend to discuss the relationship between PM exposure and HF that is based on inflammatory mechanism and to provide a comprehensive, updated evaluation of the related studies. Epidemiological studies on PM-induced heart diseases are focused on high concentrations of PM, high pollutant load exposure in winter, or susceptible groups with heart diseases, etc. Furthermore, it appears that the relationship between fine or ultrafine PM and HF is stronger than that between HF and coarse PM. However, fewer studies paid attention to PM components. As for experimental studies, it is worth noting that coarse PM may indirectly promote the inflammatory response in the heart through systematic circulation of cytokines produced primarily in the lungs, while ultrafine PM and its components can enter circulation and further induce inflammation directly in the heart. In terms of PM exposure and enhanced inflammation during the pathogenesis of HF, this article reviews the following mechanisms: hemodynamics, oxidative stress, Toll-like receptors (TLRs) and epigenetic regulation. However, many problems are still unsolved, and future work will be needed to clarify the complex biologic mechanisms and to identify the specific components of PM responsible for adverse effects on heart health.


Sign in / Sign up

Export Citation Format

Share Document