scholarly journals Incorporating In-Stream Nutrient Uptake into River Management: Gipuzkoa Rivers (Basque Country, North Spain) as a Case Study

2019 ◽  
Vol 11 (9) ◽  
pp. 2692 ◽  
Author(s):  
Maddi Altuna ◽  
Eugènia Martí ◽  
Francesc Sabater ◽  
José Ramón Díez ◽  
Joan Lluís Riera ◽  
...  

Gipuzkoa (Basque Country, North Spain) is an industrial region where investments in sanitation and wastewater treatment have improved water quality and partially recovered river biological communities. However, further technological improvements are unlikely. Our objective was to assess whether in-stream self-purification may contribute to improvement of the trophic state of rivers. We propose an integrative approach to assessing river water quality, which diagnoses problems, identifies likely causes and prescribes solutions. We first analysed the loads of nutrients transported by Gipuzkoa rivers and compared them with the potential nutrient uptake rates (estimated from published empirical regressions). In reaches where both of them were within one order of magnitude, we considered that the self-purification capacity of river channels may influence nutrient concentrations. Then, we selected some river reaches where no other water quality problems beyond nutrient concentrations occurred and ran the expert system STREAMES 1.0 to diagnose the problems and detect their causes. The studied reaches differed in their problems and in their potential solutions. We empirically determined nutrient retention in two streams by means of mass balances and slug nutrient additions. We detected large differences in retention capacity between reaches and siltation as one of the main problems affecting the self-purification capacity of the study streams. Finally, we used STREAMES 1.0 to identify potential solutions to specific river sections. The results obtained so far point towards an important potential of in-stream bioreactive capacity to reduce nutrient loads and to specific restoration activities that may improve the functionality and trophic status of the streams in Gipuzkoa.

2011 ◽  
Vol 8 (4) ◽  
pp. 875-882 ◽  
Author(s):  
D. von Schiller ◽  
S. Bernal ◽  
E. Martí

Abstract. To establish the relevance of in-stream processes on nutrient export at catchment scale it is important to accurately estimate whole-reach net nutrient uptake rates that consider both uptake and release processes. Two empirical approaches have been used in the literature to estimate these rates: (a) the mass balance approach, which considers changes in ambient nutrient loads corrected by groundwater inputs between two stream locations separated by a certain distance, and (b) the spiralling approach, which is based on the patterns of longitudinal variation in ambient nutrient concentrations along a reach following the nutrient spiralling concept. In this study, we compared the estimates of in-stream net nutrient uptake rates of nitrate (NO3) and ammonium (NH4) and the associated uncertainty obtained with these two approaches at different ambient conditions using a data set of monthly samplings in two contrasting stream reaches during two hydrological years. Overall, the rates calculated with the mass balance approach tended to be higher than those calculated with the spiralling approach only at high ambient nitrogen (N) concentrations. Uncertainty associated with these estimates also differed between both approaches, especially for NH4 due to the general lack of significant longitudinal patterns in concentration. The advantages and disadvantages of each of the approaches are discussed.


1999 ◽  
Vol 39 (3) ◽  
pp. 113-120 ◽  
Author(s):  
G. Bendoricchio ◽  
L. Calligaro ◽  
G. M. Carrer

The results of three water quality monitoring programs implemented in the watershed of the Lagoon of Venice are presented. The programs focus on nutrient discharge because of its critical effect on eutrophication of the Lagoon. One of these programs is concerned with the long term variation of water quality. It shows the positive effect induced by the interventions on point source pollution of urbanised areas. It results in the reduction of ammonia concentration and in the increase of dissolved oxygen downstream of major cities. It also shows the negative effect of increases in corn crops in upland areas on the nitrate nitrogen concentration at the sources of major rivers. The short term monitoring program shows the quick variation of nutrient concentrations during rain events in the rivers, and the close relation between the diffuse pollution sources and the deterioration of water quality. The total nutrient loads measured at the monitored river outlets confirm the loads predicted by mathematical models for the whole basin, and the importance of the diffuse pollution loads on the global loads discharged into the Lagoon. The progress in reduction of point source pollution increases the role of the diffuse sources, and demands for urgent and strong intervention on those to reach the final goal of stable mesotrophic conditions in the water body. Finally, data analysis of the monitoring programs also indicates an effective strategy for further monitoring of the river basin focused on the effectiveness of the pollution abatement program, and the real time control of water quality for the management of the Lagoon of Venice.


2020 ◽  
Author(s):  
Martin Tschikof ◽  
Stephanie Natho ◽  
Thomas Hein ◽  
Elisabeth Bondar-Kunze

<p>In the last centuries, rivers in Central Europe have severely suffered from hydro-morphological alterations and excessive nutrient inputs. Their adjacent floodplains have the ability to retain transported nutrients in case of inundation, but are subject to progressing decoupling from the main river stem. In the Austrian Danube Floodplain National Park, restoration measures have been carried out and are planned for the near future to increase lateral connectivity in accordance with navigation purposes.</p><p>We investigated nutrient retention capacity in seven differently connected side arms and the potential effects of further proposed reconnection measures using two complementary modeling approaches. With existing monitoring data on hydrology, nitrate and total phosphorus concentrations for three side arms, we derived a multivariate statistical model and compared these results to a larger scaled semi-empirical retention model (Venohr et al. 2011). We modelled nutrient retention at current state and after completion of side arm reconnections in a dry (2003) and wet (2002) hydrologic year.</p><p>Both models show comparable annual retention rates and agree in calculating higher nutrient retention in floodplains where reconnection allows more frequent inundations at low discharges. The semi-empirical approach results in highest retention rates at low hydraulic loads and shows more reasonable results at high floods. On the other hand, the statistical approach predicts increasing retention rates with higher nutrient loads entering the side arms and also takes into account nitrate reduction in the remaining water bodies at times of no surface water connection.</p><p>Our results suggest that water quality of the Danube River could be improved by increasing parameters related to lateral connectivity between river and floodplain. These include in particular the frequency and area of inundation, as well as nutrient input loads into the reactive zones of floodplains. Still, a frequently hydrologically connected national park stretch after restoration reduces nutrient loads of the Upper Danube by less than 0.1% due to its small areal extent in relation to transported river nutrient loads. In order to sustain an adequate water quality in future, both a reduction in nutrient emissions and a larger area of functional floodplains along the Danube River are required.</p><p><strong>References:</strong></p><p>Venohr, M., Hirt, U., Hofmann, J., Opitz, D., Gericke, A., Wetzig, A., ... & Mahnkopf, J. (2011). Modelling of nutrient emissions in river systems–MONERIS–methods and background. International Review of Hydrobiology, 96(5), 435-483.</p><p><strong>Key words:</strong></p><p>River floodplains, lateral connectivity, nutrient retention, river restoration, floodplain reconnection, water quality</p>


2016 ◽  
Vol 13 (20) ◽  
pp. 5753-5769 ◽  
Author(s):  
Elin Almroth-Rosell ◽  
Moa Edman ◽  
Kari Eilola ◽  
H. E. Markus Meier ◽  
Jörgen Sahlberg

Abstract. The Swedish Coastal zone Model (SCM) was used at a test site, the Stockholm archipelago, located in the northern part of the central Baltic Sea, to study the retention capacity of the coastal filter on nitrogen (N) and phosphorus (P) loads from land and atmosphere. The efficiency of the coastal filter to permanently retain nutrients determines how much of the local nutrient loads actually reach the open sea. The SCM system is a nutrient–phytoplankton–zooplankton–detritus-type model coupled to a horizontally integrated, physical model in particular suitable for estuaries. In this study the Stockholm Archipelago, consisting of 86 sub-basins, was divided into three sub-areas: the inner, the intermediate and the outer archipelago. An evaluation of model results showed that the modelled freshwater supply agrees well with observations. The nutrient, salinity and temperature dynamics simulated by the SCM are also found to be in good or acceptable agreement with observations. The analysis showed that the Stockholm Archipelago works as a filter for nutrients that enter the coastal zone from land, but the filter efficiency is not effective enough to retain all the supplied nutrients. However, at least 65 and 72 % of the P and N, respectively, are retained during the studied period (1990–2012). A major part of the retention is permanent, which for P means burial. For N, almost 92 % of the permanent retention is represented by benthic denitrification, less than 8 % by burial, while pelagic denitrification is below 1 %. Highest total amounts of P and N are retained in the outer archipelago, where the surface area is largest. The area-specific retention of P and N, however, is highest in the smaller inner archipelago and decreases towards the open sea. A reduction scenario of the land loads of N and P showed that the filter efficiencies of N and P increase and the export of N from the archipelago decreases. About 15 years after the reduction, the export of P changes into an import of P from the open sea to the archipelago.


2018 ◽  
Vol 22 (1) ◽  
pp. 487-508 ◽  
Author(s):  
Liang Yu ◽  
Joachim Rozemeijer ◽  
Boris M. van Breukelen ◽  
Maarten Ouboter ◽  
Corné van der Vlugt ◽  
...  

Abstract. The Amsterdam area, a highly manipulated delta area formed by polders and reclaimed lakes, struggles with high nutrient levels in its surface water system. The polders receive spatially and temporally variable amounts of water and nutrients via surface runoff, groundwater seepage, sewer leakage, and via water inlets from upstream polders. Diffuse anthropogenic sources, such as manure and fertiliser use and atmospheric deposition, add to the water quality problems in the polders. The major nutrient sources and pathways have not yet been clarified due to the complex hydrological system in lowland catchments with both urban and agricultural areas. In this study, the spatial variability of the groundwater seepage impact was identified by exploiting the dense groundwater and surface water monitoring networks in Amsterdam and its surrounding polders. A total of 25 variables (concentrations of total nitrogen (TN), total phosphorus (TP), NH4, NO3, HCO3, SO4, Ca, and Cl in surface water and groundwater, N and P agricultural inputs, seepage rate, elevation, land-use, and soil type) for 144 polders were analysed statistically and interpreted in relation to sources, transport mechanisms, and pathways. The results imply that groundwater is a large source of nutrients in the greater Amsterdam mixed urban–agricultural catchments. The groundwater nutrient concentrations exceeded the surface water environmental quality standards (EQSs) in 93 % of the polders for TP and in 91 % for TN. Groundwater outflow into the polders thus adds to nutrient levels in the surface water. High correlations (R2 up to 0.88) between solutes in groundwater and surface water, together with the close similarities in their spatial patterns, confirmed the large impact of groundwater on surface water chemistry, especially in the polders that have high seepage rates. Our analysis indicates that the elevated nutrient and bicarbonate concentrations in the groundwater seepage originate from the decomposition of organic matter in subsurface sediments coupled to sulfate reduction and possibly methanogenesis. The large loads of nutrient-rich groundwater seepage into the deepest polders indirectly affect surface water quality in the surrounding area, because excess water from the deep polders is pumped out and used to supply water to the surrounding infiltrating polders in dry periods. The study shows the importance of the connection between groundwater and surface water nutrient chemistry in the greater Amsterdam area. We expect that taking account of groundwater–surface water interaction is also important in other subsiding and urbanising deltas around the world, where water is managed intensively in order to enable agricultural productivity and achieve water-sustainable cities.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2762
Author(s):  
Brad A. Gordon ◽  
Olivia Dorothy ◽  
Christian F. Lenhart

Nutrient loads in fresh and coastal waters continue to lead to harmful algal blooms across the globe. Historically, floodplains—low-lying areas adjacent to streams and rivers that become inundated during high-flow events—would have been nutrient deposition and/or removal sites within riparian corridors, but many floodplains have been developed and/or disconnected. This review synthesizes literature and data available from field studies quantifying nitrogen (N) and phosphorus (P) removal within floodplains across North America and Europe to determine how effective floodplain restoration is at removing nutrients. The mean removal of nitrate-N (NO3−-N), the primary form of N in floodplain studies, was 200 (SD = 198) kg-N ha−1 year−1, and of total or particulate P was 21.0 (SD = 31.4) kg-P ha−1 year−1. Based on the literature, more effective designs of restored floodplains should include optimal hydraulic load, permanent wetlands, geomorphic diversity, and dense vegetation. Floodplain restorations along waterways with higher nutrient concentrations could lead to a more effective investment for nutrient removal. Overall, restoring and reconnecting floodplains throughout watersheds is a viable and effective means of removing nutrients while also restoring the many other benefits that floodplains provide.


2010 ◽  
Vol 7 (5) ◽  
pp. 7527-7542
Author(s):  
D. von Schiller ◽  
S. Bernal ◽  
E. Martí

Abstract. To establish the relevance of in-stream processes on nutrient export at catchment scale it is important to accurately estimate whole-reach net nutrient uptake rates that consider both uptake and release processes. Two empirical approaches have been used in the literature to estimate these rates: (a) the mass balance approach, which considers changes in nutrient loads corrected by groundwater inputs between two stream locations separated by a certain distance, and (b) the spiralling approach, which is based on the patterns of longitudinal variation in ambient nutrient concentrations along a reach following the nutrient spiralling concept. In this study, we compared the estimates of in-stream net nutrient uptake rates of nitrogen (N) and the associated uncertainty obtained with these two approaches at different ambient conditions using a data set of monthly samplings in two contrasting stream reaches during two hydrological years. The rates calculated with the mass balance approach tended to be higher than those calculated with the spiralling approach but only at high ambient N concentrations. Uncertainty associated with these estimates also differed between both approaches, especially for ammonium due to the lack of significant longitudinal patterns in concentration. The advantages and disadvantages of each of the approaches are discussed.


Author(s):  
Linda GRINBERGA ◽  
Ainis LAGZDINS

The research site consists of a pilot-scale surface flow constructed wetland at the farm Mezaciruli located in Zalenieki County, Jelgava Region, in the middle part of Latvia. The constructed wetland was installed in June 2014 to improve water quality in agricultural catchment and examine nutrient retention at the constructed wetland receiving surface and drainage runoff. The constructed wetland’s surface area of 0.37 ha corresponds to 0.5 % of the total catchment area. During the observation period of 32 months (2014-2017) water quality parameters such as total suspended solids (TSS), nitrate-nitrogen (NO3-N), ammonium-nitrogen (NH4-N), total nitrogen (TN), orthophosphate-phosphorus (PO4-P), and total phosphorus (TP) were monitored twice a month using a grab sample approach. Retention efficiency for monitored water quality parameters was calculated based on their concentrations at the inlet and outlet. The monitoring results obtained during this study showed a reduction within the constructed wetland for all examined parameters. The concentrations of NO3-N, NH4-N and TN were reduced on average by 13 %, 15 % and 16 %, respectively. PO4-P and TP concentrations were reduced on average by 38 % and 36 %, respectively. Total suspended solids were reduced by 31% at the outlet of the constructed wetland. However, in some cases, an increase in nutrient concentrations in water leaving the constructed wetland was observed. Therefore, there is a need for further research to investigate causes of such increase.


2017 ◽  
Author(s):  
Liang Yu ◽  
Joachim Rozemeijer ◽  
Boris M. van Breukelen ◽  
Maarten Ouboter ◽  
Corné van der Vlugt ◽  
...  

Abstract. In this study, the spatial variability of the groundwater seepage impact was identified by exploiting the dense groundwater and surface water monitoring networks in Amsterdam and its surrounding polders. Twenty-three variables (concentrations of Total-N, Total-P, NH4, NO3, HCO3, SO4, Ca, and Cl in surface water and groundwater, seepage rate, elevation, land-use, and soil type) for 144 polders were analysed. The results imply that groundwater is a large source of nutrients in these mixed urban/agricultural catchments. It is confirmed by high correlations (R2 up to 0.88) between solutes in groundwater and surface water, together with the close similarities in their spatial patterns. The groundwater nutrient concentrations exceeded the surface water Environmental Quality Standards (EQSs) in 93 % of the polders for TP and in 91 % for TN. The elevated nutrient and bicarbonate concentrations in the groundwater seepage originate from the decomposition of organic matter in subsurface sediments coupled to sulfate reduction and possibly methanogenesis. The large loads of nutrient rich groundwater seepage into the deepest polders indirectly affect surface water quality in the surrounding area, because excess water from the deep polders is pumped out and used to supply water to the surrounding infiltrating polders in dry periods. The study shows the importance of the connection between groundwater and surface water nutrient chemistry in the greater Amsterdam area. We expect that taking account of groundwater-surface water interaction is also important in other subsiding and urbanising deltas around the world, where water is managed intensively in order to enable agricultural productivity and achieve water sustainable cities.


2016 ◽  
Vol 8 (1) ◽  
pp. 62-77 ◽  
Author(s):  
Mária Dinka ◽  
Anita Kiss ◽  
Norbert Magyar ◽  
Edit Ágoston-Szabó

AbstractReed stands may be employed in the amelioration of water quality or even in the treatment of wastewater. In this study, the nutrient concentrations of (i) the above- and below-ground Common Reed (Phragmites australis) biomass, and (ii) surface and interstitial water were analyzed in a natural stand used in wastewater treatment. The reed stand was located in Hungarian part of Lake Fertő/Neusiedler See, by the shore near Fertőrákos Bay. The nitrate, phosphate and dissolved organic nitrogen concentrations of surface water were found to be higher on the inlet side of the reed stand compared to the outlet. The N and P concentrations in the above-ground biomass and P concentrations in the below-ground biomass increased after the introduction of pre-treated wastewater. The inter-annual differences in the characteristics of sediment interstitial water and in the nutrient content of reed tissues were assessed using statistical methods. The samples taken before and after the introduction of the pre-treated wastewater in the parcel formed different clusters. The results of the study provide further evidence that the nutrient retention capacity of natural stands of P. australis may be employed in the treatment of wastewater while protecting and preserving the valuable natural assets of the lake.


Sign in / Sign up

Export Citation Format

Share Document