scholarly journals Assessment of Photovoltaic Potential of Mining Sites in Uzbekistan

2019 ◽  
Vol 11 (10) ◽  
pp. 2988 ◽  
Author(s):  
Mokhinabonu Mardonova ◽  
Yosoon Choi

The present study analyzed the potential of eight operational mining sites in Uzbekistan for the installation of photovoltaic (PV) systems: Sarmich, Ingichka, Kuytosh, Yakhton, Chauli, Sherobod, Chorkesar, and Tebinbuloq. A PV system with 1 MW capacity, which required a total of 4926 m2 of project land, was considered. The renewable energy analysis software RETScreen, developed by Natural Resources Canada (NRC), was used to calculate energy production, greenhouse gas reduction, and financial factors of the PV systems in the selected study areas. The iron mine Tebinbuloq in Karakalpak showed the highest potential, with annual electricity production of approximately 1685 MWh, equating to a potential reduction of approximately 930 tons of greenhouse gases. The economic benefit of the PV system in this mine was $2.217 million USD net present value with a project payback period of approximately 13 years. The results of precision checks of satellite- and ground-based solar measurements showed high correlations; hence, satellite-based data can be applied for solar project assessments where solar monitoring meteorological stations are not available.

2020 ◽  
Vol 12 (24) ◽  
pp. 10344
Author(s):  
Sameh Monna ◽  
Adel Juaidi ◽  
Ramez Abdallah ◽  
Mohammed Itma

This paper targets the future energy sustainability and aims to estimate the potential energy production from installing photovoltaic (PV) systems on the rooftop of apartment’s residential buildings, which represent the largest building sector. Analysis of the residential building typologies was carried out to select the most used residential building types in terms of building roof area, number of floors, and the number of apartments on each floor. A computer simulation tool has been used to calculate the electricity production for each building type, for three different tilt angles to estimate the electricity production. Tilt angle, spacing between the arrays, the building shape, shading from PV arrays, and other roof elements were analyzed for optimum and maximum electricity production. The electricity production for each household has been compared to typical household electricity consumption and its future consumption in 2030. The results show that installing PV systems on residential buildings can speed the transition to renewable energy and energy sustainability. The electricity production for building types with 2–4 residential units can surplus their estimated future consumption. Building types with 4–8 residential units can produce their electricity consumption in 2030. Building types of 12–24 residential units can produce more than half of their 2030 future consumption.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1040 ◽  
Author(s):  
Spyridon Achinas ◽  
Gerrit Euverink

Anaerobic technology is a well-established technique to wean the fossil fuel-based energy off with various positive environmental inferences. Biowaste treatment is favorable due to its low emissions. Biogas is merely regarded as the main product of anaerobic digestion with high energy value. One of the key concerns of the waste water treatment plants is the vast amount of cellulosic residuals produced after the treatment of waste waters. The fine sieve fraction, collected after the primary sludge removal, has great energy value. In this study, the economic performance of a biogas plant has been analyzed based on net present value and pay-back period concepts. The plant in the base scenario produced 309,571 m3 biogas per year. The annual electricity production has been 390,059 kWh. The producible heat energy has been 487,574 kWh or 1755 GJ per year. The plant depicts a positive economic situation with 11 years pay-back time, earning low profits and showing a positive net present value of 11,240 €.


2014 ◽  
Vol 672-674 ◽  
pp. 44-47
Author(s):  
Xin Fang Wu ◽  
Yong Sheng Liu ◽  
Juan Xu ◽  
Xiao Dong Si ◽  
Wei Lei ◽  
...  

This paper mainly analyses a BAPV system of 3kWp and a BIPV system of 10 kWp in Shanghai, China. Net present value (NPV) and the payback time (Pd) as the parameters to determine the profitability of the system based on some actual measured data. As there are two subsidy policies in China, including the initial investment subsidy and PV electricity tariff subsidy. The variations of NPV and Pdwith the initial investment subsidy and PV electricity tariff subsidy are researched. Analysis results indicate both the systems have a good economic benefit. Since the manufacturing, utilization and recycling periods of PV systems can lead to negative impacts on the environment. Environmental impacts by both the systems are also evaluated in this paper by the energy payback time (EPBT) and greenhouse-gas payback time (GPBT). Results show both the systems have a good environmental benefit, PV technology and PV system are sustainable.


2021 ◽  
Vol 11 (19) ◽  
pp. 9318
Author(s):  
Mladen Bošnjaković ◽  
Ante Čikić ◽  
Boris Zlatunić

A large drop in prices of photovoltaic (PV) equipment, an increase in electricity prices, and increasing environmental pressure to use renewable energy sources that pollute the environment significantly less than the use of fossil fuels have led to a large increase in installed roof PV capacity in many parts of the world. In this context, this paper aims to analyze the cost-effectiveness of installing PV systems in the rural continental part of Croatia on existing family houses. A typical example is a house in Dragotin, Croatia with an annual consumption of 4211.70 kWh of electricity on which PV panels are placed facing south under the optimal slope. The calculation of the optimal size of a PV power plant with a capacity of 3.6 kW, without battery energy storage, was performed by the Homer program. The daily load curve was obtained by measuring the electricity consumption at the facility every hour during a characteristic day in the month of June. As most of the activities are related to electricity consumption, repeating during most days of the year, and taking into account seasonal activities, daily load curves were made for a characteristic day in each month of the year. Taking into account the insolation for the specified location, using the Internet platform Solargis Prospect, hourly data on the electricity production of selected PV modules for a characteristic day in each month were obtained. Based on the previous data, the electricity injected into the grid and taken from the grid was calculated. Taking into account the current tariffs for the sale and purchase of electricity, investment prices, and maintenance of equipment, the analysis shows that such a PV system can pay off in 10.5 years without government incentives.


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 225 ◽  
Author(s):  
Pedro Branco ◽  
Francisco Gonçalves ◽  
Ana Cristina Costa

The fastest-growing renewable source of energy is solar photovoltaic (PV) energy, which is likely to become the largest electricity source in the world by 2050. In order to be a viable alternative energy source, PV systems should maximise their efficiency and operate flawlessly. However, in practice, many PV systems do not operate at their full capacity due to several types of anomalies. We propose tailored algorithms for the detection of different PV system anomalies, including suboptimal orientation, daytime and sunrise/sunset shading, brief and sustained daytime zero-production, and low maximum production. Furthermore, we establish simple metrics to assess the severity of suboptimal orientation and daytime shading. The proposed detection algorithms were applied to a set of time-series of electricity production in Portugal, which are based on two periods with distinct weather conditions. Under favourable weather conditions, the algorithms successfully detected most of the time-series labelled with either daytime or sunrise/sunset shading, and with either sustained or brief daytime zero-production. There was a relatively low percentage of false positives, such that most of the anomaly detections were correct. As expected, the algorithms tend to be more robust under favourable rather than under adverse weather conditions. The proposed algorithms may prove to be useful not only to research specialists, but also to energy utilities and owners of small- and medium-sized PV systems, who may thereby effortlessly monitor their operation and performance.


Proceedings ◽  
2019 ◽  
Vol 31 (1) ◽  
pp. 50 ◽  
Author(s):  
G. Almonacid-Olleros ◽  
G. Almonacid ◽  
J. I. Fernandez-Carrasco ◽  
Javier Medina Quero

In this paper we present Deep Learning (DL) modelling to forecast the behaviour and energy production of a photovoltaic (PV) system. Using deep learning models rather than following the classical way (analytical models of PV systems) presents an outstanding advantage: context-aware learning for PV systems, which is independent of the deployment and configuration parameters of the PV system, its location and environmental conditions. These deep learning models were developed within the Ópera Digital Platform using the data of the UniVer Project, which is a standard PV system that was in place for the last twenty years in the Campus of the University of Jaén (Spain). From the obtained results, we conclude that the combination of CNN and LSTM is an encouraging model to forecast the behaviour of PV systems, even improving the results from the standard analytical model.


Author(s):  
Mahmoud Ismail

Performance ratio is one of the indicators used to describe the effectiveness of the PV systems. The sustainability of the PV system year after year as well as its reliability can be checked by measuring the performance ratio each year. This indicator will also enable us to carry out a comparison between the performances of different PV systems. In this paper, the performance ratios for five PV systems installed on the roof tops of some of PTUK university buildings have been calculated on monthly and yearly basis. The analysis has been carried out using the available data (energy production and solar irradiation) for the year 2019. It was found that the performance ratio has higher values for May and September in comparison with other months. On the other hand, its lowest values were obtained in winter months. This trend can be observed for all of the PV clusters on the five buildings.  When taking into account the overall system, the highest value for the performance ratio was 0.89, which was for September, whereas its lowest value of 0.70 was obtained in January. The performance ratio, which was calculated on yearly basis for the overall system, was found to be 0.80. When considering each building separately, the lowest value was 0.44 for the “Services” building whereas the highest value was 0.94 for the Science building.


2018 ◽  
Vol 10 (9) ◽  
pp. 3117 ◽  
Author(s):  
Federica Cucchiella ◽  
Idiano D’Adamo ◽  
Massimo Gastaldi ◽  
Vincenzo Stornelli

Renewable energy is a wide topic in environmental engineering and management science. Photovoltaic (PV) power has had great interest and growth in recent years. The energy produced by the PV system is intermittent and it depends on the weather conditions, presenting lower levels of production than other renewable resources (RESs). The economic feasibility of PV systems is linked typically to the share of self-consumption in a developed market and consequently, energy storage system (ESS) can be a solution to increase this share. This paper proposes an economic feasibility of residential lead-acid ESS combined with PV panels and the assumptions at which these systems become economically viable. The profitability analysis is conducted on the base of the Discounted Cash Flow (DCF) method and the index used is Net Present Value (NPV). The analysis evaluates several scenarios concerning a 3-kW plant located in a residential building in a PV developed market (Italy). It is determined by combinations of the following critical variables: levels of insolation, electricity purchase prices, electricity sales prices, investment costs of PV systems, specific tax deduction of PV systems, size of batteries, investment costs of ESS, lifetime of a battery, increases of self-consumption following the adoption of an ESS, and subsidies of ESS. Results show that the increase of the share of self-consumption is the main critical variable and consequently, the break-even point (BEP) analysis defines the case-studies in which the profitability is verified.


2018 ◽  
Vol 61 ◽  
pp. 00010 ◽  
Author(s):  
Marius Paulescu ◽  
Oana Mares ◽  
Ciprian Dughir ◽  
Eugenia Paulescu

This paper presents an innovative procedure for nowcasting the energy production of PV systems. The procedure is relayed on a new version of two-state model for forecasting solar irradiance at ground level and a simplified description of the PV system. The results of testing the proposed procedure against on field measured data are discussed. Generally, the proposed procedure demonstrates a better performance than the main competitor based on ARIMA forecasting of the clearness index.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1746
Author(s):  
Luka Budin ◽  
Goran Grdenić ◽  
Marko Delimar

The world’s demand for electrical energy is increasing rapidly while the use of fossil fuels is getting limited more and more by energy policies and the need for reducing the impact of climate change. New sources of energy are required to fulfill the world’s demand for electricity and they are currently found in renewable sources of energy, especially in solar and wind power. Choosing the optimal PV nominal power minimizes the unnecessary surplus of electrical energy that is exported to the grid and thus is not making any impact on the grid more than necessary. Oversizing the PV system according to the Croatian net-metering model results in switching the calculation of the costs to the prosumer model which results in a decrease of the project’s net present value (NPV) and an increase in the payback period (PP). This paper focuses on formulating and solving the optimization problem for determining the optimal nominal power of a grid-connected PV system with a case study for Croatia using multiple scenarios in the variability of electricity production and consumption. In this paper, PV systems are simulated in the power range that corresponds to a typical annual high-tariff consumption in Croatian households. Choosing the optimal power of the PV system maximizes the investor’s NPV of the project as well as savings on the electricity costs. The PP is also minimized and is determined by the PV production, household consumption, discount rate, and geographic location. The optimization problem is classified as a quadratically constrained discrete optimization problem, where the value of the optimal PV power is not a continuous variable because the PV power changes with a step of one PV panel power. Modeling and simulations are implemented in Python using the Gurobi optimization solver.


Sign in / Sign up

Export Citation Format

Share Document