scholarly journals Environmental and Management Considerations for Adopting the Halophyte Salicornia bigelovii Torr. as a Sustainable Seawater-Irrigated Crop.

2020 ◽  
Vol 12 (2) ◽  
pp. 707 ◽  
Author(s):  
Rodolfo Garza-Torres ◽  
Enrique Troyo-Diéguez ◽  
Alejandra Nieto-Garibay ◽  
Gregorio Lucero-Vega ◽  
Francisco Javier Magallón-Barajas ◽  
...  

Salicornia bigelovii Torr. is a potential new crop for coastal and saline lands, because of the oil content of its seeds, its properties as fresh vegetable, forage, and other uses. As a true halophyte, it can grow with seawater irrigation. The aim of this study was to determine the phenology and water requirements of Salicornia as a new plant resource in growing areas for salt-tolerant crops in coastal and saline lands, and elucidate scenarios of sustainability about these issues. Water requirements were estimated in experimental plots on the coastal line and fulfilled with drip irrigation connected to seawater aquaculture discharge ponds, 30 m from the sea. The recorded phenological events were germination, flowering, fructification, maturation, and physiological death. Results reflect the difficulty to adopt it as a new crop because of its long-life cycle, around nine months, contrasting with the life cycle of common crops, from three to four months. Irrigation needs reached a depth of 240 cm, significantly exceeding those of conventional crops. Such limitations are highlighted, but also its potential use as a biofilter of coastal aquaculture effluents, being a productive target-biomass, feasible to be used as a dual-purpose use of water and energy required in aquaculture farms.

2021 ◽  
Vol 35 ◽  
pp. 102339
Author(s):  
Miguel A. Morales-Mora ◽  
Joep J.H. Pijpers ◽  
Alejandro Castillo Antonio ◽  
Javier de la Cruz Soto ◽  
Agustín Moisés Alcaraz Calderón

2020 ◽  
Author(s):  
Houda Chelaifa ◽  
Manikandan Vinu ◽  
Massar Dieng ◽  
Youssef Idaghdour ◽  
Ayesha Hasan ◽  
...  

AbstractSoil salinity is an increasing threat to global food production systems. As such, there is a need for salt tolerant plant model systems in order to understand salt stress regulation and response. Salicornia bigelovii, a succulent obligatory halophyte, is one of the most salt tolerant plant species in the world. It possesses distinctive characteristics that make it a candidate plant model for studying salt stress regulation and tolerance, showing promise as an economical non-crop species that can be used for saline land remediation and for large-scale biofuel production. However, available S. bigelovii genomic and transcriptomic data are insufficient to reveal its molecular mechanism of salt tolerance. We performed transcriptome analysis of S. bigelovii flowers, roots, seeds and shoots tissues cultivated under desert conditions and irrigated with saline aquaculture effluent. We identified a unique set of tissue specific transcripts present in this non-model crop. A total of 66,943 transcripts (72.63%) were successfully annotated through the GO database with 18,321 transcripts (27.38%) having no matches to known transcripts. Excluding non-plant transcripts, differential expression analysis of 49,914 annotated transcripts revealed differentially expressed transcripts (DETs) between the four tissues and identified shoots and flowers as the most transcriptionally similar tissues relative to roots and seeds. The DETs between above and below ground tissues, with the exclusion of seeds, were primarily involved in osmotic regulation and ion transportation. We identified DETs between shoots and roots implicated in salt tolerance including SbSOS1, SbNHX, SbHKT6 upregulated in shoots relative to roots, while aquaporins (AQPs) were up regulated in roots. We also noted that DETs implicated in osmolyte regulation exhibit a different profile among shoots and roots. Our study provides the first report of a highly upregulated HKT6 from S. bigelovii shoot tissue. Furthermore, we identified two BADH transcripts with divergent sequence and tissue specific expression pattern. Overall, expression of the ion transport transcripts suggests Na+ accumulation in S. bigelovii shoots. Our data led to novel insights into transcriptional regulation across the four tissues and identified a core set of salt stress-related transcripts in S. bigelovii.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Md. Kamal Uddin ◽  
Abdul Shukor Juraimi

Land and water resources are becoming scarce and are insufficient to sustain the burgeoning population. Salinity is one of the most important abiotic stresses affecting agricultural productions across the world. Cultivation of salt-tolerant turfgrass species may be promising option under such conditions where poor quality water can also be used for these crops. Coastal lands in developing countries can be used to grow such crops, and seawater can be used for irrigation of purposes. These plants can be grown using land and water unsuitable for conventional crops and can provide food, fuel, fodder, fibber, resin, essential oils, and pharmaceutical products and can be used for landscape reintegration. There are a number of potential turfgrass species that may be appropriate at various salinity levels of seawater. The goal of this review is to create greater awareness of salt-tolerant turfgrasses, their current and potential uses, and their potential use in developing countries. The future for irrigating turf may rely on the use of moderate- to high-salinity water and, in order to ensure that the turf system is sustainable, will rely on the use of salt-tolerant grasses and an improved knowledge of the effects of salinity on turfgrasses.


Science ◽  
1991 ◽  
Vol 251 (4997) ◽  
pp. 1065-1067 ◽  
Author(s):  
E. P. GLENN ◽  
J. W. O'LEARY ◽  
M. C. WATSON ◽  
T. L. THOMPSON ◽  
R. O. KUEHL

2016 ◽  
Vol 49 (1-4) ◽  
pp. 20-29
Author(s):  
OrevaOghene Aliku ◽  
Suarau Odutola Oshunsanya

Abstract Accurate quantification of irrigation water requirement at different physiological growth stages of okra (Abelmoschus esculentus L.) life cycle is important to prevent over or under irrigation. Field experiments were therefore initiated to model okra irrigation water requirements at the four physiological growth stages of okra life cycle using CROPWAT model. Derived savannah 1 (DS1), derived savannah 2 (DS2) and humid forest (HF) occupying 493.36 ha, 69.83 ha and 305.25 ha respectively were used. Some selected soil physical properties coupled with weather parameters were used to develop irrigation water requirements for okra crop. In DS1, the estimated crop co-efficient (Kc) values were 0.30, 0.52, 0.84 and 0.70 for the germination, crop growth, flowering and fruiting stages, respectively. Corresponding Kc values in DS2 were 0.30, 0.54, 0.90 and 0.84 and in the HF were 0.30, 0.56, 0.87 and 0.86 respectively. Daily crop evapo-transpiration values ranged from 1.16 to 3.36, 1.17 to 3.64, and 1.2 to 3.38 mm day-1 for DS1, DS2 and HF respectively with significant (p = 0.05) peak at the flowering stage for the three locations. Sustainable okra cultivation would require maximum daily irrigation water at flowering stage (reproductive phase) to meet the crop physiological needs and evapo-transpiration demand of the atmosphere.


2014 ◽  
Vol 25 (4) ◽  
pp. 80-92 ◽  
Author(s):  
Debbie Sparks ◽  
Amos Madhlopa ◽  
Samantha Keen ◽  
Mascha Moorlach ◽  
Anthony Dane ◽  
...  

South Africa is an arid country, where water supply is often obtained from a distant source. There is increasing pressure on the limited water resources due to economic and population growth, with a concomitant increase in the energy requirement for water production. This problem will be exacerbated by the onset of climate change. Recently, there have been concerns about negative impacts arising from the exploitation of energy resources. In particular, the burning of fossil fuels is significantly contributing to climate change through the emission of carbon dioxide, a major greenhouse gas. In addition, fossil fuels are being depleted, and contributing to decreased energy security. As a result of this, the international community has initiated various interventions, including the transformation of policy and regulatory instruments, to promote sustainable energy. With this in mind, South Africa is making policy and regulatory shifts in line with international developments. Renewable energy is being promoted as one way of achieving sustainable energy provision in the country. However, some issues require scrutiny in order to understand the water footprint of renewable energy production. Due to the large gap that exists between water supply and demand, trade-offs in water allocation amongst different users are critical. In this vein, the main objective of this study was to investigate and review renewable energy choices and water requirements in South Africa. Data were acquired through a combination of a desktop study and expert interviews. Water withdrawal and consumption levels at a given stage of energy production were investigated. Most of the data was collected from secondary sources. Results show that there is limited data on all aspects of water usage in the production chain of energy, accounting in part for the significant variations in the values of water intensity that are reported in the literature. It is vital to take into account all aspects of the energy life cycle to enable isolation of stages where significant amounts of water are used. It is found that conventional fuels (nuclear and fossil fuels) withdraw significant quantities of water over the life-cycle of energy production, especially for thermoelectric power plants operated with a wet-cooling system. The quality of water is also adversely affected in some stages of energy production from these fuels. On the other hand, solar photovoltaic and wind energy exhibit the lowest demand for water, and could perhaps be considered the most viable renewable options in terms of water withdrawal and consumption.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Mirza Hasanuzzaman ◽  
Kamrun Nahar ◽  
Md. Mahabub Alam ◽  
Prasanta C. Bhowmik ◽  
Md. Amzad Hossain ◽  
...  

Salinity is one of the rising problems causing tremendous yield losses in many regions of the world especially in arid and semiarid regions. To maximize crop productivity, these areas should be brought under utilization where there are options for removing salinity or using the salt-tolerant crops. Use of salt-tolerant crops does not remove the salt and hence halophytes that have capacity to accumulate and exclude the salt can be an effective way. Methods for salt removal include agronomic practices or phytoremediation. The first is cost- and labor-intensive and needs some developmental strategies for implication; on the contrary, the phytoremediation by halophyte is more suitable as it can be executed very easily without those problems. Several halophyte species including grasses, shrubs, and trees can remove the salt from different kinds of salt-affected problematic soils through salt excluding, excreting, or accumulating by their morphological, anatomical, physiological adaptation in their organelle level and cellular level. Exploiting halophytes for reducing salinity can be good sources for meeting the basic needs of people in salt-affected areas as well. This review focuses on the special adaptive features of halophytic plants under saline condition and the possible ways to utilize these plants to remediate salinity.


Author(s):  
James R. Meldrum ◽  
Jordan E. Macknick ◽  
Garvin A. Heath ◽  
Syndi L. Nettles-Anderson

Water requirements throughout the electricity generation life cycle have important implications for the electricity sector. Thermoelectric power plant operations are estimated as responsible for around 36% [1] to 41% [2] of total freshwater withdrawals in the United States and 3% of total freshwater consumption [1,3]. However, the life cycle of electricity generation consists of many stages besides power plant operation, including component manufacturing, fuel acquisition, processing, and transport, and power plant decommissioning. The water requirements associated with choices along this life cycle, such as the selection of fuel type or cooling technology, are not well understood.


Sign in / Sign up

Export Citation Format

Share Document