scholarly journals A Comparative Analysis of Machine Learning Approaches for Short-/Long-Term Electricity Load Forecasting in Cyprus

2020 ◽  
Vol 12 (9) ◽  
pp. 3612 ◽  
Author(s):  
Davut Solyali

Estimating the electricity load is a crucial task in the planning of power generation systems and the efficient operation and sustainable growth of modern electricity supply networks. Especially with the advent of smart grids, the need for fairly precise and highly reliable estimation of electricity load is greater than ever. It is a challenging task to estimate the electricity load with high precision. Many energy demand management methods are used to estimate future energy demands correctly. Machine learning methods are well adapted to the nature of the electrical load, as they can model complicated nonlinear connections through a learning process containing historical data patterns. Many scientists have used machine learning (ML) to anticipate failure before it occurs as well as predict the outcome. ML is an artificial intelligence (AI) subdomain that involves studying and developing mathematical algorithms to understand data or obtain data directly without relying on a prearranged model algorithm. ML is applied in all industries. In this paper, machine learning strategies including artificial neural network (ANN), multiple linear regression (MLR), adaptive neuro-fuzzy inference system (ANFIS), and support vector machine (SVM) were used to estimate electricity demand and propose criteria for power generation in Cyprus. The simulations were adapted to real historical data explaining the electricity usage in 2016 and 2107 with long-term and short-term analysis. It was observed that electricity load is a result of temperature, humidity, solar irradiation, population, gross national income (GNI) per capita, and the electricity price per kilowatt-hour, which provide input parameters for the ML algorithms. Using electricity load data from Cyprus, the performance of the ML algorithms was thoroughly evaluated. The results of long-term and short-term studies show that SVM and ANN are comparatively superior to other ML methods, providing more reliable and precise outcomes in terms of fewer estimation errors for Cyprus’s time series forecasting criteria for power generation.

2020 ◽  
Vol 12 (2) ◽  
pp. 84-99
Author(s):  
Li-Pang Chen

In this paper, we investigate analysis and prediction of the time-dependent data. We focus our attention on four different stocks are selected from Yahoo Finance historical database. To build up models and predict the future stock price, we consider three different machine learning techniques including Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN) and Support Vector Regression (SVR). By treating close price, open price, daily low, daily high, adjusted close price, and volume of trades as predictors in machine learning methods, it can be shown that the prediction accuracy is improved.


2018 ◽  
Vol 50 (2) ◽  
pp. 655-671
Author(s):  
Tian Liu ◽  
Yuanfang Chen ◽  
Binquan Li ◽  
Yiming Hu ◽  
Hui Qiu ◽  
...  

Abstract Due to the large uncertainties of long-term precipitation prediction and reservoir operation, it is difficult to forecast long-term streamflow for large basins with cascade reservoirs. In this paper, a framework coupling the original Climate Forecasting System (CFS) precipitation with the Soil and Water Assessment Tool (SWAT) was proposed to forecast the nine-month streamflow for the Cascade Reservoir System of Han River (CRSHR) including Shiquan, Ankang and Danjiangkou reservoirs. First, CFS precipitation was tested against the observation and post-processed through two machine learning algorithms, random forest and support vector regression. Results showed the correlation coefficients between the monthly areal CFS precipitation (post-processed) and observation were 0.91–0.96, confirming that CFS precipitation post-processing using machine learning was not affected by the extended forecast period. Additionally, two precipitation spatio-temporal distribution models, original CFS and similar historical observation, were adopted to disaggregate the processed monthly areal CFS precipitation to daily subbasin-scale precipitation. Based on the reservoir restoring flow, the regional SWAT was calibrated for CRSHR. The Nash–Sutcliffe efficiencies for three reservoirs flow simulation were 0.86, 0.88 and 0.84, respectively, meeting the accuracy requirement. The experimental forecast showed that for three reservoirs, long-term streamflow forecast with similar historical observed distribution was more accurate than that with original CFS.


2021 ◽  
Author(s):  
Yongmin Cho ◽  
Rachael A Jonas-Closs ◽  
Lev Y Yampolsky ◽  
Marc W Kirschner ◽  
Leonid Peshkin

We present a novel platform for testing the effect of interventions on life- and health-span of a short-lived semi transparent freshwater organism, sensitive to drugs with complex behavior and physiology - the planktonic crustacean Daphnia magna. Within this platform, dozens of complex behavioural features of both routine motion and response to stimuli are continuously accurately quantified for large homogeneous cohorts via an automated phenotyping pipeline. We build predictive machine learning models calibrated using chronological age and extrapolate onto phenotypic age. We further apply the model to estimate the phenotypic age under pharmacological perturbation. Our platform provides a scalable framework for drug screening and characterization in both life-long and instant assays as illustrated using long term dose response profile of metformin and short term assay of such well-studied substances as caffeine and alcohol.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bidhan Lamichhane ◽  
Andy G. S. Daniel ◽  
John J. Lee ◽  
Daniel S. Marcus ◽  
Joshua S. Shimony ◽  
...  

Glioblastoma multiforme (GBM) is the most frequently occurring brain malignancy. Due to its poor prognosis with currently available treatments, there is a pressing need for easily accessible, non-invasive techniques to help inform pre-treatment planning, patient counseling, and improve outcomes. In this study we determined the feasibility of resting-state functional connectivity (rsFC) to classify GBM patients into short-term and long-term survival groups with respect to reported median survival (14.6 months). We used a support vector machine with rsFC between regions of interest as predictive features. We employed a novel hybrid feature selection method whereby features were first filtered using correlations between rsFC and OS, and then using the established method of recursive feature elimination (RFE) to select the optimal feature subset. Leave-one-subject-out cross-validation evaluated the performance of models. Classification between short- and long-term survival accuracy was 71.9%. Sensitivity and specificity were 77.1 and 65.5%, respectively. The area under the receiver operating characteristic curve was 0.752 (95% CI, 0.62–0.88). These findings suggest that highly specific features of rsFC may predict GBM survival. Taken together, the findings of this study support that resting-state fMRI and machine learning analytics could enable a radiomic biomarker for GBM, augmenting care and planning for individual patients.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Lingyu Dong

In recent years, wireless sensor network technology has continued to develop, and it has become one of the research hotspots in the information field. People have higher and higher requirements for the communication rate and network coverage of the communication network, which also makes the problems of limited wireless mobile communication network coverage and insufficient wireless resource utilization efficiency become increasingly prominent. This article is aimed at studying a support vector regression method for long-term prediction in the context of wireless network communication and applying the method to regional economy. This article uses the contrast experiment method and the space occupancy rate algorithm, combined with the vector regression algorithm of machine learning. Research on the laws of machine learning under the premise of less sample data solves the problem of the lack of a unified framework that can be referred to in machine learning with limited samples. The experimental results show that the distance between AP1 and AP2 is 0.4 m, and the distance between AP2 and Client2 is 0.6 m. When BPSK is used for OFDM modulation, 2500 MHz is used as the USRP center frequency, and 0.5 MHz is used as the USRP bandwidth; AP1 can send data packets. The length is 100 bytes, the number of sent data packets is 100, the gain of Client2 is 0-38, the receiving gain of AP2 is 0, and the receiving gain of AP1 is 19. The support vector regression method based on wireless network communication for regional economic mid- and long-term predictions was completed well.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Mahmuda Akhtar ◽  
Sara Moridpour

In recent years, traffic congestion prediction has led to a growing research area, especially of machine learning of artificial intelligence (AI). With the introduction of big data by stationary sensors or probe vehicle data and the development of new AI models in the last few decades, this research area has expanded extensively. Traffic congestion prediction, especially short-term traffic congestion prediction is made by evaluating different traffic parameters. Most of the researches focus on historical data in forecasting traffic congestion. However, a few articles made real-time traffic congestion prediction. This paper systematically summarises the existing research conducted by applying the various methodologies of AI, notably different machine learning models. The paper accumulates the models under respective branches of AI, and the strength and weaknesses of the models are summarised.


2018 ◽  
Vol 10 (1) ◽  
pp. 203 ◽  
Author(s):  
Xianming Dou ◽  
Yongguo Yang ◽  
Jinhui Luo

Approximating the complex nonlinear relationships that dominate the exchange of carbon dioxide fluxes between the biosphere and atmosphere is fundamentally important for addressing the issue of climate change. The progress of machine learning techniques has offered a number of useful tools for the scientific community aiming to gain new insights into the temporal and spatial variation of different carbon fluxes in terrestrial ecosystems. In this study, adaptive neuro-fuzzy inference system (ANFIS) and generalized regression neural network (GRNN) models were developed to predict the daily carbon fluxes in three boreal forest ecosystems based on eddy covariance (EC) measurements. Moreover, a comparison was made between the modeled values derived from these models and those of traditional artificial neural network (ANN) and support vector machine (SVM) models. These models were also compared with multiple linear regression (MLR). Several statistical indicators, including coefficient of determination (R2), Nash-Sutcliffe efficiency (NSE), bias error (Bias) and root mean square error (RMSE) were utilized to evaluate the performance of the applied models. The results showed that the developed machine learning models were able to account for the most variance in the carbon fluxes at both daily and hourly time scales in the three stands and they consistently and substantially outperformed the MLR model for both daily and hourly carbon flux estimates. It was demonstrated that the ANFIS and ANN models provided similar estimates in the testing period with an approximate value of R2 = 0.93, NSE = 0.91, Bias = 0.11 g C m−2 day−1 and RMSE = 1.04 g C m−2 day−1 for daily gross primary productivity, 0.94, 0.82, 0.24 g C m−2 day−1 and 0.72 g C m−2 day−1 for daily ecosystem respiration, and 0.79, 0.75, 0.14 g C m−2 day−1 and 0.89 g C m−2 day−1 for daily net ecosystem exchange, and slightly outperformed the GRNN and SVM models. In practical terms, however, the newly developed models (ANFIS and GRNN) are more robust and flexible, and have less parameters needed for selection and optimization in comparison with traditional ANN and SVM models. Consequently, they can be used as valuable tools to estimate forest carbon fluxes and fill the missing carbon flux data during the long-term EC measurements.


2021 ◽  
Author(s):  
Rahel Vortmeyer-Kley ◽  
Pascal Nieters ◽  
Gordon Pipa

<p>Ecological systems typically can exhibit various states ranging from extinction to coexistence of different species in oscillatory states. The switch from one state to another is called bifurcation. All these behaviours of a specific system are hidden in a set of describing differential equations (DE) depending on different parametrisations. To model such a system as DE requires full knowledge of all possible interactions of the system components. In practise, modellers can end up with terms in the DE that do not fully describe the interactions or in the worst case with missing terms.</p><p>The framework of universal differential equations (UDE) for scientific machine learning (SciML) [1] allows to reconstruct the incomplete or missing term from an idea of the DE and a short term timeseries of the system and make long term predictions of the system’s behaviour. However, the approach in [1] has difficulties to reconstruct the incomplete or missing term in systems with bifurcations. We developed a trajectory-based loss metric for UDE and SciML to tackle the problem and tested it successfully on a system mimicking algal blooms in the ocean.</p><p>[1] Rackauckas, Christopher, et al. "Universal differential equations for scientific machine learning." arXiv preprint arXiv:2001.04385 (2020).</p>


2018 ◽  
Vol 1 ◽  
pp. 1-36
Author(s):  
Faisal Anees ◽  
Shujahat Haider Hashmi ◽  
Muhammad Asad

Technical analysis is widely accepted tool in professional place which is frequently used for investment decisions. Technical analysis beliefs that there exist patterns and trends and by capturing trends and patterns one can bless with above average profits. We test two technical strategies: Moving averages and Trading Range to question, either these techniques can yield profitable returns with the help of historical data. Representative daily indices of Four countries namely Pakistan, India, Srilanka, Bangladesh ranging from 1997 to 2011 have been examined. In case of Moving Average Rule, both simple and exponential averages have been examined to test eleven different short term and long term rules with and without band condition. Our results delivered that buy signals generate consistent above average returns for the all sub periods and sell signals generate lower returns than the normal returns. Intriguing observation is that Exponential average generates higher returns than the Simple Average. The results of Trading Range Break strategy are parallel with Moving average Method. However, Trading Range Strategy found not to give higher average higher return when compared with Moving Averages Rules and degree of volatility in returns is higher when compared with moving Average rule. In attempt to conclude, there exist patterns and trends that yield above average and below average returns which justify the validity of technical analysis.


Sign in / Sign up

Export Citation Format

Share Document