scholarly journals Risk Analysis Related to Impact of Climate Change on Water Resources and Hydropower Production in the Lusatian Neisse River Basin

2020 ◽  
Vol 12 (12) ◽  
pp. 5060 ◽  
Author(s):  
Mariusz Adynkiewicz-Piragas ◽  
Bartłomiej Miszuk

Water resources are one of the most important issues affected by climate change. Climate scenarios show that in the upcoming decades, further climate change can occur. It concerns especially air temperature and sunshine duration, whose prognosis indicates a significant rising trend till the end of the century. The goal of the paper was the evaluation of water resources and hydropower production in the future, depending on climate scenarios with a consideration of risk analysis. The analysis was carried out on the basis of observation data for the Lusatian Neisse river basin (Poland) for 1971–2015 and climate projections till 2100 for the RCP2.6 and RCP8.5 (representative concentration pathways) scenarios. The results of the research showed that, especially in terms of RCP8.5, very high risk of decrease in water resources and hydropower production is expected in the future. Therefore, recommendations for mitigation of the possible effects are presented.

2010 ◽  
Vol 7 (3) ◽  
pp. 3159-3188 ◽  
Author(s):  
Y. Huang ◽  
W. F. Yang ◽  
L. Chen

Abstract. Doubtlessly, global climate change and its impacts have caught increasing attention from all sectors of the society world-widely. Among all those affected aspects, hydrological circle has been found rather sensitive to climate change. Climate change, either as the result or as the driving-force, has intensified the uneven distribution of water resources in the Changjiang (Yangtze) River basin, China. In turn, drought and flooding problems have been aggravated which has brought new challenges to current hydraulic works such as dike or reservoirs which were designed and constructed based on the historical hydrological characteristics, yet has been significantly changed due to climate change impact. Thus, it is necessary to consider the climate change impacts in basin planning and water resources management, currently and in the future. To serve such purpose, research has been carried out on climate change impact on water resources (and hydrological circle) in Changjiang River. The paper presents the main findings of the research, including main findings from analysis of historical hydro-meteorological data in Changjiang River, and runoff change trends in the future using temperature and precipitation predictions calculated based on different emission scenarios of the 24 Global Climate Modes (GCMs) which has been used in the 4th IPCC assessment report. In this research, two types of macro-scope statistical and hydrological models were developed to simulate runoff prediction. Concerning the change trends obtained from the historical data and the projection from GCMs results, the trend of changes in water resources impacted by climate change was analyzed for Changjiang River. Uncertainty of using the models and data were as well analyzed.


Author(s):  
zhen wang ◽  
Meixue Yang ◽  
xuejia wang ◽  
lizhen cheng ◽  
guoning wan ◽  
...  

Climate changes may pose challenges to water management. Simulation and projection of climate-runoff processes through hydrological models are essential means to assess the impact of global climate change on runoff variations. This study focuses on the upper Taohe River Basin which is an important water sources for arid and semi-arid regions in Northwest China. In order to assess the impacts of environmental changes, outputs from a regional climate model and the SWAT hydrological model were used to analyze the future climate change scenarios to water resources quantitatively. The examined climate changes scenarios results showed that average annual temperature from 2020 to 2099 in this area exhibits a consistent warming trend with different warming rates, at rates of 0.10°C/10a, 0.20°C /10a and 0.54°C /10a under RCP2.6, RCP4.5 and RCP8.5(Representative Concentration Pathways, RCPs), The value of precipitation experiences different trends under different emission scenarios. Under the RCP2.6, average precipitation would decrease at a rate of 3.69 mm/10a, while under the RCP4.5 and RCP8.5, it would increase at rates of 4.97 mm/10a and 12.28 mm/10a, respectively. The calibration and validation results in three in-site observations (Luqu, Xiabagou and Minxian) in the upper Taohe River Basin showed that SWAT hydrological model is able to produce an acceptable simulation of runoff at monthly time-step. In response to future climate changes, projected runoff change would present different decreasing trends. Under RCP2.6, annual average runoff would experience a progress of fluctuating trend, with a rate of-0.6×108m3 by 5-year moving average method; Under the RCP4.5 and RCP8.5, annual average runoff would show steadily increasing trends, with rates of 0.23×108m3 and 0.16×108m3 by 5-year moving average method. The total runoff in the future would prone to drought and flood disasters. Overall, this research results would provide a scientific reference for reginal water resources management on the long term.


2020 ◽  
Author(s):  
Jing Tian ◽  
Shenglian Guo ◽  
Chong-Yu Xu

<p>As a link between the atmosphere and the earth’s surface, the hydrological cycle is impacted by both climate change and land use/cover change (LUCC). For most basins around the world, the co-variation of climate change and LUCC will continue in the future, which highlights the significance to explore the temporal-spatial distribution and variation mechanism of runoff and to improve our ability in water resources planning and management. Therefore, the purpose of this study is to propose a framework to examine the response of runoff to climate change and LUCC under different future scenarios. Firstly, the future climate scenarios under BCC-CSM1.1 and BNU-ESM are both downscaled and bias-corrected by the Daily bias correction (DBC) method, meanwhile, the future LUCC scenarios are predicted by the Cellular Automaton-Markov (CA-Markov) model according to the integrated basin plans of future land use. Then, based on the baseline scenario S0 (meteorological data from 1966 to 2005 and current situation LUCC2010), the following three scenarios are set with different combinations of future climate land-use situations, i.e., S1: only climate change scenario; S2: only the LUCC scenario; S3: climate and LUCC co-variation scenario. Lastly, the Soil and Water Assessment Tool (SWAT) model is used to simulate the hydrological process and quantify the impacts of climate change and LUCC on the runoff yield. The proposed framework is applied to the Han River basin in China. Results show that: (1) compared with the base period (1966-2005), the annual rainfall, daily maximum, and minimum air temperature during 2021-2060 will have an increase of 4.0%, 1.8℃, 1.6℃ in RCP4.5 while 3.7%, 2.5℃, 2.3℃ in RCP8.5, respectively; (2) from 2010 to 2050, the forest land and construction land in the Han River basin will have an increase of 2.8% and 1.2%, respectively, while that of farmland and grassland will have a decrease of 1.5% and 2.5%, respectively; (3) comparing with the single climate change or LUCC scenario, the co-variation scenario possesses the largest uncertainty in runoff projection. Under the two concentration paths, there is a consistent upward change in future runoff (2021-2060) of the studied basin compared with that in the base period, furthermore, the increase rate in RCP4.5 (+5.10%) is higher than that in RCP8.5 (+2.67%). The results of this study provide a useful reference and help for water resources and land use management in the Han River basin.</p>


2021 ◽  
Vol 16 (8) ◽  
pp. 1197-1206
Author(s):  
Sohaib Baig ◽  
Takahiro Sayama ◽  
Kaoru Takara ◽  
◽  
◽  
...  

The upper Indus River basin has large masses of glaciers that supply meltwater in the summer. Water resources from the upper Indus River basin are crucial for human activities and ecosystems in Pakistan, but they are vulnerable to climate change. This study focuses on the impacts of climate change, particularly the effects of receding glaciers on the water resources in a catchment of the upper Indus river basin. This study predicts river flow using a hydrologic model coupled with temperature-index snow and glacier melt models forced by observed climate data. The basin is divided into seven elevation zones so that the melt components and rainfall-runoff were calculated at each elevation zone. Hydrologic modeling revealed that glaciers contributed one-third of the total flow while snowmelt melt contributed about 40%; rainfall contributed to the remaining flow. Some climate scenarios based on CMIP5 and CORDEX were employed to quantify the impacts of climate change on annual river flows. The glacier retreat in the mid and late centuries is also considered based on climate change scenarios. Future river flows, simulated by the hydrologic model, project significant changes in their quantity and timing. In the mid-century, river flows will increase because of higher precipitation and glacier melt. Simulations projected that until 2050, the overall river flows will increase by 11%, and no change in the shape of the hydrograph is expected. However, this increasing trend in river flows will reverse in the late century because glaciers will not have enough mass to sustain the glacier melt flow. The change will result in a 4.5% decrease in flow, and the timing of the monthly peak flow will shift from June to May. This earlier shift in the streamflow will make water management more difficult in the future, requiring inclusive approaches in water resource management.


2020 ◽  
Vol 24 (11) ◽  
pp. 5297-5315
Author(s):  
Sara Suárez-Almiñana ◽  
Abel Solera ◽  
Jaime Madrigal ◽  
Joaquín Andreu ◽  
Javier Paredes-Arquiola

Abstract. Climate change and its possible effects on water resources has become an increasingly near threat. Therefore, the study of these impacts in highly regulated systems and those suffering extreme events is essential to deal with them effectively. This study responds to the need for an effective method to integrate climate change projections into water planning and management analysis in order to guide the decision-making, taking into account drought risk assessments. Therefore, this document presents a general and adaptive methodology based on a modeling chain and correction processes, whose main outcomes are the impacts on future natural inflows, a drought risk indicator, and the simulation of future water storage in the water resources system (WRS). This method was applied in the Júcar River basin (JRB) due to its complexity and the multiannual drought events it suffers recurrently. The results showed a worrying decrease in future inflows, as well as a high probability (≈80 %) of being under 50 % of total capacity of the WRS in the near future. However, the uncertainty of the results was considerable from the mid-century onwards, indicating that the skill of climate projections needs to be improved in order to obtain more reliable results. Consequently, this paper also highlights the difficulties of developing this type of method, taking partial decisions to adapt them as far as possible to the basin in an attempt to obtain clearer conclusions on climate change impact assessments. Despite the high uncertainty, the results of the JRB call for action and the tool developed can be considered as a feasible and robust method to facilitate and support decision-making in complex basins for future water planning and management.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Antonio-Juan Collados-Lara ◽  
David Pulido-Velazquez ◽  
Eulogio Pardo-Igúzquiza

Global warming associated with greenhouse emissions will modify the availability of water resources in the future. Methodologies and tools to assess the impacts of climate change are useful for policy making. In this work, a new tool to generate potential future climate scenarios in a water resources system from historical and regional climate models’ information has been developed. The GROUNDS tool allows generation of the future series of precipitation, temperature (minimum, mean, and maximum), and potential evapotranspiration. It is a valuable tool for assessing the impacts of climate change in hydrological applications since these variables play a significant role in the water cycle, and it can be applicable to any case study. The tool uses different approaches and statistical correction techniques to generate individual local projections and ensembles of them. The non-equifeasible ensembles are created by combining the individual projections whose control or corrected control simulation has a better fit to the historical series in terms of basic and droughts statistics. In this work, the tool is presented, and the methodology implemented is described. It is also applied to a case study to illustrate how the tool works. The tool was previously tested in different typologies of water resources systems that cover different spatial scales (river basin, aquifer, mountain range, and country), obtaining satisfactory results. The local future scenarios can be propagated through appropriate hydrological models to study the impacts on other variables (e.g., aquifer recharge, chloride concentration in coastal aquifers, streamflow, snow cover area, and snow depth). The tool is also useful in quantifying the uncertainties of the future scenarios by combining them with stochastic weather generators.


2018 ◽  
Vol 246 ◽  
pp. 01090
Author(s):  
Wang kai ◽  
Qian mingkai ◽  
Xu shijing ◽  
Liang shuxian ◽  
Chen hongyu ◽  
...  

The Huaihe river basin, located in the transitional area of the humid zone to the semi arid zone, is a subtropical monsoon zone. By analysis of historical observation data, the annual average surface temperature increased by 0.5℃ over the past 50 years. However, the precipitation showed a fluctuation trend. Based on the hydrological and meteorological data of Huaihe River Basin, this paper studies impacts of climate change on water resources in Huaihe basin by using the Xinanjiang monthly hydrological model in conjunction with prediction products of NCAR climate model. The results show that the precipitation in the basin had a fluctuating upward trend under RCP8.5 and RCP4.5 scenarios, and the increase or decrease trend of precipitation in RCP2.6 scenario is not significant. The model predicted that the temperature of the river basin in the 3 scenarios shows significant rising trend from year 2001 to 2100. However, the annual runoff of the Huaihe River Basin shows an increasing trend but not significant from year 2001 to 2100.


2019 ◽  
Vol 11 (3) ◽  
pp. 744-759
Author(s):  
Abebe G. Adera ◽  
Knut T. Alfredsen

Abstract Climate change is expected to intensify the hydropower production in East Africa. This research investigates the runoff and energy production in the current and future climate for the Tekeze hydropower plant located in the Tekeze river basin in the northern part of Ethiopia. The rainfall-runoff model HBV and the hydropower simulator nMAG were used to generate runoff and energy production in the current and future climate. A combination of five regional climate models and seven global climate models from the Coordinated Regional Climate Downscaling Experiment were used to generate bias-corrected scenarios for the future climate. The result shows an increase in future runoff which was shown to be due to an increase in precipitation. However, the current operational strategy of the power plant did not utilize the future runoff in an optimal way. Therefore, based on the projected future inflow, we have developed a new reservoir operational strategy to preserve water for power production. As a result, the energy production was increased, and the flood spill from the reservoir reduced. This shows the need to adapt the hydropower production system to the future flow regimes to get the most out of the available water.


2020 ◽  
Author(s):  
Hong Li

<p>The Xinjiang Uyghur Autonomous Region is the area on Earth which is most remote from any ocean and the annual precipitation is only 50 mm. Water availability for e.g. agriculture, water supply, and hydropower production is limited in this area. The area has ~20 000 glaciers and they are the main source for water resources. However, since the 1950s, the glaciers are continuously retreating by 20-30%, and result reductions runoff in the lower reaches of some rivers. In this study, we use a widely used hydrological model (HBV) with a glacier retreat module to study the impacts of climate change and glacier retreat on water resources. An ensemble of climate projections up to the end of the century will be explored and the WEAP (Water Evaluation And Planning) model system will be used to analyze impacts on the society.</p>


Author(s):  
Zhangrong Pan ◽  
Wei Li ◽  
Junhong Guo ◽  
Zhuo Chen ◽  
Hui Qin

Owing to the rich water resources, the Dadu River basin is an important hydroelectric resources development area in Sichuan Province over China. The climate change will have a great impact on the runoff change in the Dadu River Basin. The prediction of the future runoff in the Dadu River Basin can effectively improve the utilization rate of water resources, and provide a reference for hydropower dispatching. At first, to reduce the uncertainties from climate model, this paper used Stepwise Clustering Analysis to calibrate and validate the CORDEX regional climate model ensemble data from 1970 to 2005 and projected the climate change trend of Dadu River basin from 2035 to 2065. Then the Dadu River watershed scales of SWAT model was established, using the SWAT-CUP for calibration and verification. Finally, the corrected future climate data are used to drive the SWAT model to realize the future runoff forecast in the Dadu River Basin. The results show that under the scenario of RCP4.5 and RCP8.5, the variation range of rainfall is small, and the maximum and minimum temperatures show an overall increasing trend. The maximum (minimum) temperature will increase about 0.6℃ (1.0℃) under the scenarios of RCP4.5 and 0.9℃ (1.4℃) under the scenario of RCP8.5. Compared with the baseline period, the future (2035-2065) annual runoff under RCP4.5 and RCP8.5 scenarios will increase by about 8.6% and 8.2%, respectively. Under the future climate change, the inter-annual runoff in the Dadu River Basin will change greatly, and the trend of runoff fluctuation is not consistent before and after 2050. Before 2050, runoff changes are small, however, after 2050, runoff changes under the two scenarios will increase by about 12%. On the one hand, this trend may be due to the impact of iceberg melting on runoff caused by temperature changes around 2050, on the other hand, it may be due to the combined effect of local plant evapotranspiration and ecological regulation.


Sign in / Sign up

Export Citation Format

Share Document