scholarly journals The Impact of Technological Processes on Odorant Emissions at Municipal Waste Biogas Plants

2020 ◽  
Vol 12 (13) ◽  
pp. 5457
Author(s):  
Marta Wiśniewska ◽  
Andrzej Kulig ◽  
Krystyna Lelicińska-Serafin

Municipal waste treatment is inherently associated with odour emissions. The compounds characteristic of the processes used for this purpose, and at the same time causing a negative olfactory sensation, are organic and inorganic sulphur and nitrogen compounds. The tests were carried out at the waste management plant, which in the biological part, uses the methane fermentation process and is also equipped with an installation for the collection, treatment, and energetic use of biogas. The tests include measurements of the four odorant concentrations and emissions, i.e., volatile organic compounds (VOCs), ammonia (NH3), hydrogen sulphide (H2S), and methanethiol (CH3SH). Measurements were made using a MultiRae Pro portable gas detector sensor. The tests were carried out in ten series for twenty measurement points in each series. The results show a significant impact of technological processes on odorant emissions. The types of waste going to the plant are also important in shaping this emission. On the one hand, it relates to the waste collection system and, on the other hand, the season of year. In addition, it has been proved that the detector used during the research is a valuable tool enabling the control of technological processes in municipal waste processing plants.

2021 ◽  
Vol 11 (9) ◽  
pp. 3916
Author(s):  
Marta Wiśniewska ◽  
Andrzej Kulig ◽  
Krystyna Lelicińska-Serafin

Municipal waste treatment plants are an important element of the urban area infrastructure, but also, they are a potential source of odour nuisance. Odour impact from municipal waste processing plants raises social concerns regarding the well-being of employees operating the plants and residents of nearby areas. Chemical methods involve the determination of the quantitative composition of compounds comprising odour. These methods are less costly than olfactometry, and their efficiency is not dependent on human response. The relationship between the concentration of a single odorant and its odour threshold (OT) is determined by the odour activity value (OAV) parameter. The research involved the application of a multi-gas detector, MultiRae Pro. Measurements by means of the device were conducted at three municipal waste biogas plants located in Poland. In this paper we describe the results obtained when using a detector during the technological processes, the unitary procedures conducted at the plants, and the technological regime. The determination of these relationships could be useful in the development of odour nuisance minimization procedures at treatment plants and the adjustment to them. This is of paramount importance from the viewpoint of the safety and hygiene of the employees operating the installations and the comfort of residents in the areas surrounding biogas plants. Monitoring of expressed odorant emissions allows the course of technological processes and conducted unit operations to be controlled.


Proceedings ◽  
2019 ◽  
Vol 16 (1) ◽  
pp. 42
Author(s):  
Marta Wiśniewska

The aim of this study was to analyse the work of the MultiRAEPro gas detector in terms of its application in monitoring odour emissions from biogas plants processing municipal waste constituting part of a mechanical–biological waste treatment plant. The obtained results provided the basis for formulating conclusions concerning the use of a gas detector in monitoring odour emissions from biogas plants processing municipal waste. The study results can be applied in practice in biogas plants processing municipal waste as well as in other municipal facilities.


2020 ◽  
Vol 10 (3) ◽  
pp. 1093 ◽  
Author(s):  
Marta Wiśniewska ◽  
Andrzej Kulig ◽  
Krystyna Lelicińska-Serafin

Biogas plants processing municipal waste are an important part of a circular economy (energy generation from biogas and organic fertiliser production for the treatment of selectively collected biowaste). However, the technological processes taking place may be associated with odour nuisance. The paper presents the results of pilot research conducted at six municipal waste biogas plants in Poland. It shows the relations between odour intensity and concentration and the occurring meteorological and ambient conditions (air temperature and relative humidity) and technological factors at biogas plants processing municipal waste. The impact of meteorological and ambient conditions was identified by measuring air temperature and relative humidity and observing their changes. The impact of technological factors was identified by measuring odorant concentration (volatile organic compounds and ammonia) and observing their changes between individual measurement series. At most analysed biogas plants, the influence of technological factors on odour emissions took place and was clearly noted. The elements of biogas installations characterised by the highest concentration of these odorants were indicated. Special attention should be paid to the choice of technological solutions and technical and organisational measures to reduce the impact of unfavourable atmospheric conditions on odour emissions.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6470
Author(s):  
Marta Wiśniewska ◽  
Andrzej Kulig ◽  
Krystyna Lelicińska-Serafin

The increase in the amount of municipal solid waste (MSW) generated, among other places, in households is a result of the growing population, economic development, as well as the urbanisation of areas with accompanying insufficiently effective measures to minimise waste generation. There are many methods for treating municipal waste, with the common goal of minimising environmental degradation and maximising resource recovery. Biodegradable waste, including selectively collected biowaste (BW), also plays an essential role in the concept of the circular economy (CE), which maximises the proportion of waste that can be returned to the system through organic recycling and energy recovery. Methane fermentation is a waste treatment process that is an excellent fit for the CE, both technically, economically, and environmentally. This study aims to analyse and evaluate the problem of odour nuisance in municipal waste biogas plants (MWBPs) and the impact of the feedstock (organic fraction of MSW-OFMSW and BW) on this nuisance in the context of CE assumptions. A literature review on the subject was carried out, including the results of our own studies, showing the odour nuisance and emissions from MWBPs processing both mixed MSW and selectively collected BW. The odour nuisance of MWBPs varies greatly. Odour problems should be considered regarding particular stages of the technological line. They are especially seen at the stages of waste storage, fermentation preparation, and digestate dewatering. At examined Polish MWBPs cod ranged from 4 to 78 ou/m3 for fermentation preparation and from 8 to 448 ou/m3 for digestate dewatering. The conclusions drawn from the literature review indicate both the difficulties and benefits that can be expected with the change in the operation of MWBPs because of the implementation of CE principles.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6463
Author(s):  
Marta Wiśniewska ◽  
Andrzej Kulig ◽  
Krystyna Lelicińska-Serafin

Municipal waste biogas plants are an important element of waste treatment and energy policy. In this study, odorant concentrations and emissions were measured together with the air temperature (T) and relative humidity (RH) to confirm the hypothesis that the microclimatic conditions have an important impact on the level of odorant emission at municipal waste biogas plants. A simple correlation analysis was made to evaluate the strength and the direction of the relationship between the odorant concentration and emission and air temperature and relative humidity. The mean volatile organic compound (VOC) and NH3 concentrations vary depending on the stage of the technological line of the analysed municipal waste biogas plants and are in the following ranges, respectively: 0–38.64 ppm and 0–100 ppm. The odorant concentrations and emissions correlated statistically significantly with T primarily influences VOC concentrations and emissions while RH mainly affects NH3 concentrations and emissions. The strongest correlations were noted for the fermentation preparation section and for emissions from roof ventilators depending on the analysed plant. The smallest influence of microclimatic factors was observed at the beginning of the technological line—in the waste storage section and mechanical treatment hall. This is due to the greater impact of the type and quality of waste delivered the plants. The analysis of correlation between individual odorants showed significant relationships between VOCs and NH3 for most stages of the technological line of both biogas plants. In the case of technological sewage pumping stations, a significant relationship was also observed between VOCs and H2S. The obtained results may be helpful in preparing strategies to reduce the odours from waste treatment plants.


2019 ◽  
Vol 29 (2) ◽  
pp. 1-12 ◽  
Author(s):  
Marta Wiśniewska ◽  
Krystyna Lelicińska-Serafin

Abstract The paper presents examples of installations for the mechanical and biological treatment of municipal waste in Poland. Each of the presented installations is defined as a regional municipal waste treatment installation (RIPOK). Their technological solutions and work efficiency have been compared in this study. In addition, the loss of waste mass as a result of processes occurring in the biological part of individual installations was calculated in the research. The paper refers to the National Waste Management Plan (KPGO 2022) regarding the circular economy. As intended by the circular economy, MBP installations will be transformed into installations that will treat selectively collected municipal waste and become Regional Recycling Centers (RCR).


2019 ◽  
Vol 116 ◽  
pp. 00098
Author(s):  
Marta Wiśniewska ◽  
Andrzej Kulig ◽  
Krystyna Lelicińska-Serafin

Biogas plants processing municipal waste on the one hand represent a trend in waste management, and on the other hand constitute an alternative energy source. Next to their unquestionable benefits, due to the character of the provided activity, they can be a potential source of odours. Municipal waste, largely containing biodegradable fractions, is often subject to decomposition processes in uncontrolled conditions still before it is supplied to the mechanical biological treatment plant. One of the effects of the processes, both controlled and uncontrolled conditions, is emission of odorants. Their spread depends on the applied technologies and adherence to the technological regime during operation. One of the factors determining the types and concentrations of emitted odorants are also meteorological conditions in which waste is stored and processed. The paper presents results of two series of pilot research conducted at four plants, involving a preliminary analysis of the effect of meteorological conditions on the emission of odorants at biogas plants processing municipal waste.


Author(s):  
Gheorghe Barariu

This paper presents the design criteria and the prerequisites for the development of the Radioactive Waste Treatment Plant - RWTP which will comply with L/ILW Final Repository requirements to be built near Cernavoda NPP. The RWTP will be designed to satisfy the main performance objectives in accordance to IAEA recommendation and on basis of the Repository’s Waste Acceptance Criteria resulted from the local conditions. One of the most important technological aspect is related to the selection of technologies, which implies, on the one hand, the impact on present generation respectively incineration, radwaste transfer from the SS drums to CS drums, SS drums super compaction and spent filter cartridges cutting, and on the other hand, technologies that isolate for 300 years the tritium and C-14 in the Repository with impact for the next generations. The Saligny Repository will be commissioned in 2014 and in order to accept radwastes from Cernavoda NPP it is necessary that the radwastes are suitably treated for long–term radionuclides isolation. The conditions and requirements including many uncertainties and constraints reduce the possibilities to select the suitable treatment technologies for the Waste Treatment Plant designed for the radwastes generated by Cernavoda NPP, this selection being a critical case due to the limited storage capacity of existing Radioactive Waste Storage Facility. The necessary Radioactive Waste Treatment Plant implies a detailed analysis including ethical aspects of the selected technologies.


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 362 ◽  
Author(s):  
Yujiao Wu ◽  
Taoping Liu ◽  
Sai Ling ◽  
Jan Szymanski ◽  
Wentian Zhang ◽  
...  

This paper presents a smart “e-nose” device to monitor indoor hazardous air. Indoor hazardous odor is a threat for seniors, infants, children, pregnant women, disabled residents, and patients. To overcome the limitations of using existing non-intelligent, slow-responding, deficient gas sensors, we propose a novel artificial-intelligent-based multiple hazard gas detector (MHGD) system that is mounted on a motor vehicle-based robot which can be remotely controlled. First, we optimized the sensor array for the classification of three hazardous gases, including cigarette smoke, inflammable ethanol, and off-flavor from spoiled food, using an e-nose with a mixing chamber. The mixing chamber can prevent the impact of environmental changes. We compared the classification results of all combinations of sensors, and selected the one with the highest accuracy (98.88%) as the optimal sensor array for the MHGD. The optimal sensor array was then mounted on the MHGD to detect and classify the target gases without a mixing chamber but in a controlled environment. Finally, we tested the MHGD under these conditions, and achieved an acceptable accuracy (70.00%).


Sign in / Sign up

Export Citation Format

Share Document