scholarly journals Impact of Green Roofs on Energy Demand for Cooling in Egyptian Buildings

2020 ◽  
Vol 12 (14) ◽  
pp. 5729 ◽  
Author(s):  
Ayman Ragab ◽  
Ahmed Abdelrady

Energy consumption for cooling purposes has increased significantly in recent years, mainly due to population growth, urbanization, and climate change consequences. The situation can be mitigated by passive climate solutions to reduce energy consumption in buildings. This study investigated the effectiveness of the green roof concept in reducing energy demand for cooling in different climatic regions. The impact of several types of green roofing of varying thermal conductivity and soil depth on energy consumption for cooling school buildings in Egypt was examined. In a co-simulation approach, the efficiency of the proposed green roof types was evaluated using the Design-Builder software, and a cost analysis was performed for the best options. The results showed that the proposed green roof types saved between 31.61 and 39.74% of energy, on average. A green roof featuring a roof soil depth of 0.1 m and 0.9 W/m-K thermal conductivity exhibited higher efficiency in reducing energy than the other options tested. The decrease in air temperature due to green roofs in hot arid areas, which exceeded an average of 4 °C, was greater than that in other regions that were not as hot. In conclusion, green roofs were shown to be efficient in reducing energy consumption as compared with traditional roofs, especially in hot arid climates.

2021 ◽  
Author(s):  
Melissa Ann Furukawa

The impact of green roof retrofits on the local microclimate and energy consumption of a building is investigated. This research is based on a case study of Kerr Hall located on the Ryerson University campus in Toronto. The software ENVI-met is used to simulate the microclimate while EnergyPlus is used for the building energy analysis. Results indicate that increasing the leaf area index (LAI) of the green roof leads to increased cooling effect up to 0.4 degrees C during the day at pedestrian-level; however, more significant cooling is attained at the rooftop-level. The addition of the green roof reduced both the heating and cooling demands and improved indoor comfort levels. Energy demand reductions up to 3% were obtained with the green roof retrofits with the biggest contribution form from reduction in heating on the top floor. Increasing the soil depth had a larger impact on the energy consumption compared to increasing the LAI.


2021 ◽  
Author(s):  
Melissa Ann Furukawa

The impact of green roof retrofits on the local microclimate and energy consumption of a building is investigated. This research is based on a case study of Kerr Hall located on the Ryerson University campus in Toronto. The software ENVI-met is used to simulate the microclimate while EnergyPlus is used for the building energy analysis. Results indicate that increasing the leaf area index (LAI) of the green roof leads to increased cooling effect up to 0.4 degrees C during the day at pedestrian-level; however, more significant cooling is attained at the rooftop-level. The addition of the green roof reduced both the heating and cooling demands and improved indoor comfort levels. Energy demand reductions up to 3% were obtained with the green roof retrofits with the biggest contribution form from reduction in heating on the top floor. Increasing the soil depth had a larger impact on the energy consumption compared to increasing the LAI.


Author(s):  
Masni A. Majid ◽  
◽  
Aina Syafawati Roslan ◽  
Noor Azlina Abdul Hamid ◽  
Norhafizah Salleh ◽  
...  

Energy was the important sources to human life. Due to increases energy demand in daily life, the energy consumption was increase day by day because of the heat load from solar radiation and heat produced by people. Toward sustainable development, this research was carried out to develop a lightweight concrete (LWC) block with various cooling agent such as glycerine, propylene glycol, coconut shell and gypsum powder. Six lightweight concrete (LWC) block with the size 250mm (L) × 250mm (W) × 100mm (T) were tested for thermal conductivity value. From the experimental result, it shows that lightweight concrete (LCW) block with various cooling agent obtained thermal conductivity value of 0.17W/mK - 0.36W/mK lower than thermal conductivity value for normal lightweight concrete (0.8W/mK) depending on concrete density. The lightweight concrete (LCW) block with cooling agent having low thermal conductivity value will reduce energy consumption in building.


Author(s):  
Brad Bass

The author is a member of Environment Canada's Adaptation and Impact Research Group, located in the Centre for Environment at the University of Toronto. His primary research interests include the use of ecological technologies in adapting urban areas to atmospheric change, the impacts of climate change on the energy sector, and the characteristics of adaptable systems. His current work on ecological technologies includes green roofs, vertical gardens and living machines. Dr Bass has been involved in two major projects, in Ottawa and Toronto, to evaluate the impact of green roofs on the urban heat island, energy consumption, stormwater runoff and water quality. Currently, Dr Bass is conducting research on integrating green roof infrastructure with other vegetation strategies at a community scale, simulating the impact of a green roof on the energy consumption of individual buildings.


2020 ◽  
Vol 10 (3) ◽  
pp. 893 ◽  
Author(s):  
Laura Cirrincione ◽  
Maria La Gennusa ◽  
Giorgia Peri ◽  
Gianfranco Rizzo ◽  
Gianluca Scaccianoce ◽  
...  

In the line of pursuing better energy efficiency in human activities that would result in a more sustainable utilization of resources, the building sector plays a relevant role, being responsible for almost 40% of both energy consumption and the release of pollutant substances in the atmosphere. For this purpose, techniques aimed at improving the energy performances of buildings’ envelopes are of paramount importance. Among them, green roofs are becoming increasingly popular due to their capability of reducing the (electric) energy needs for (summer) climatization of buildings, hence also positively affecting the indoor comfort levels for the occupants. Clearly, reliable tools for the modelling of these envelope components are needed, requiring the availability of suitable field data. Starting with the results of a case study designed to estimate how the adoption of green roofs on a Sicilian building could positively affect its energy performance, this paper shows the impact of this technology on indoor comfort and energy consumption, as well as on the reduction of direct and indirect CO2 emissions related to the climatization of the building. Specifically, the ceiling surface temperatures of some rooms located underneath six different types of green roofs were monitored. Subsequently, the obtained data were used as input for one of the most widely used simulation models, i.e., EnergyPlus, to evaluate the indoor comfort levels and the achievable energy demand savings of the building involved. From these field analyses, green roofs were shown to contribute to the mitigation of the indoor air temperatures, thus producing an improvement of the comfort conditions, especially in summer conditions, despite some worsening during transition periods seeming to arise.


2008 ◽  
Vol 3 (2) ◽  
pp. 26-40 ◽  
Author(s):  
Brad Bass

Green roofs are touted as an environmental technology for urban areas due to their many benefits (Lundholm et al. 2008). Although the design and the benefits have been reported in many reports and articles, they are reviewed here for those who are unfamiliar with this technology. Green roofs, or more formally, green roof infrastructure, is a technology that allows for the growth of vegetation on a roof while protecting the building envelope from leakage and root penetration. A green roof is more than a layer of soil piled on the roof, planted in the way that you might plant a garden. The technology consists of multiple layers that include the plants and growing medium or substrate, but also a drainage layer for storing water that was not used by the plants and a waterproof, root-repellent membrane (Figure 1).


2021 ◽  
Vol 13 (8) ◽  
pp. 4278
Author(s):  
Svetlana Tam ◽  
Jenna Wong

Sustainability addresses the need to reduce the structure’s impact on the environment but does not reduce the environment’s impact on the structure. To explore this relationship, this study focuses on quantifying the impact of green roofs or vegetated roofs on seismic responses such as story displacements, interstory drifts, and floor level accelerations. Using an archetype three-story steel moment frame, nonlinear time history analyses are conducted in OpenSees for a shallow and deep green roof using a suite of ground motions from various distances from the fault to identify key trends and sensitivities in response.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2421
Author(s):  
Bohan Shao ◽  
Caterina Valeo ◽  
Phalguni Mukhopadhyaya ◽  
Jianxun He

The influence of moisture content on substrate thermal conductivity at different temperatures was investigated for four different commercially available substrates for green roofs. In the unfrozen state, as moisture content increased, thermal conductivity increased linearly. In the phase transition zone between +5 and −10 °C, as temperature decreased, thermal conductivity increased sharply during the transition from water to ice. When the substrate was frozen, thermal conductivity varied exponentially with substrate moisture content prior to freezing. Power functions were found between thermal conductivity and temperature. Two equally sized, green roof test cells were constructed and tested to compare various roof configurations including a bare roof, varying media thickness for a green roof, and vegetation. The results show that compared with the bare roof, there is a 75% reduction in the interior temperature’s amplitude for the green roof with 150 mm thick substrate. When a sedum mat was added, there was a 20% reduction in the amplitude of the inner temperature as compared with the cell without a sedum mat.


2015 ◽  
Vol 16 (SE) ◽  
pp. 97-103
Author(s):  
Allah Bakhsh Kavoosi ◽  
Shahin Heidari ◽  
Hamed Mazaherian

Growth and development of technology caused enormous transformation and change in the world after Industrial Revolution. The contemporary human has prepared the platform for their realization in many activities that the humans were unable to do it in the past time and struck the dream of their realization in their mind so that today doing many of those activities have been apparently practical by human. This accelerating growth accompanied with consuming a lot of energy where with respect to restriction of the given existing resources, it created energy crises. On the other hand, along with growth in industry and requirement for manpower and immigration from village to city and basic architectural changes in houses, which have emerged due to change in social structure it has led to change in lifestyle and type and quantity of consuming energy in contemporary architecture. Inter alia, with increase in human’s capability, cooling and heating and acoustic and lighting technologies were also changed in architecture and using mechanical system was replaced by traditional systems. Application of modern systems, which resulted from growth of industry and development of technology and it unfortunately, caused further manipulation in nature and destruction of it by human in addition to improving capability and potential of human’s creativity. With respect to growth of population and further need for housing and tendency to the dependent heating and cooling systems to them in this article we may notice that the housing is assumed as the greatest consumer of energy to create balance among the exterior and interior spaces in line with creating welfare conditions for heating and cooling and lighting. The tables of energy demand prediction in Iran show that these costs and energy consumption will be dubbed with energy control smart management in architecture.


Coatings ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 69 ◽  
Author(s):  
Alejandra Naranjo ◽  
Andrés Colonia ◽  
Jaime Mesa ◽  
Heriberto Maury ◽  
Aníbal Maury-Ramírez

Green roof systems, a technology which was used in major ancient buildings, are currently becoming an interesting strategy to reduce the negative impact of traditional urban development caused by ground impermeabilization. Only regarding the environmental impact, the application of these biological coatings on buildings has the potential of acting as a thermal, moisture, noise, and electromagnetic barrier. At the urban scale, they might reduce the heat island effect and sewage system load, improve runoff water and air quality, and reconstruct natural landscapes including wildlife. In spite of these significant benefits, the current design and construction methods are not completely regulated by law because there is a lack of knowledge of their technical performance. Hence, this review of the current state of the art presents a proper green roof classification based on their components and vegetation layer. Similarly, a detailed description from the key factors that control the hydraulic and thermal performance of green roofs is given. Based on these factors, an estimation of the impact of green roof systems on sustainable construction certifications is included (i.e., LEED—Leadership in Energy and Environment Design, BREEAM—Building Research Establishment Environmental Assessment Method, CASBEE—Comprehensive Assessment System for Built Environment Efficiency, BEAM—Building Environmental Assessment Method, ESGB—Evaluation Standard for Green Building). Finally, conclusions and future research challenges for the correct implementation of green roofs are addressed.


Sign in / Sign up

Export Citation Format

Share Document