scholarly journals Use of EPD System for Designing New Building Materials: The Case Study of a Bio-Based Thermal Insulation Panel from the Pineapple Industry By-Product

2020 ◽  
Vol 12 (17) ◽  
pp. 6864
Author(s):  
Diego Armando Arellano-Vazquez ◽  
Luca Moreschi ◽  
Adriana Del Borghi ◽  
Michela Gallo ◽  
Gustavo Islas Valverde ◽  
...  

This study shows the benefits of using the environmental product declarations (EPDs), based on ISO 14025:2013, for the configuration and conceptualization of new building materials. Using a quantitative evaluation on these phases of design, it allows one to create materials with lower impacts, in comparison with the existing ones. In this paper, it is proposed to evaluate the potentiality of this tool in the development of a panel from pineapple by-products from agroindustry, used as a thermal insulator. The issue of environmental sustainability was pursued, employing the assessment of the environmental impacts according to characterization methods defined by the International EPD® System. By comparing the possible compositions of the materials under development, with certified environmental declarations of commercial materials, it is possible to identify and select optimal compositions decreasing up to 98.28% of impacts in acidification potential or up to 99.38% for photochemical oxidation—with respect to traditional materials—already at the design stage, where the changes on the composition or the facilities decision have fewer complications.

Author(s):  
Herinjaka Haga Ratsimbazafy ◽  
Aurélie Laborel-Préneron ◽  
Camille Magniont ◽  
Philippe Evon

The valorization of available agricultural by-products is important for the development of bio-aggregate based concretes as eco-friendly solutions for building materials. However, their diversity requires to assess their potential of use in vegetal concretes. This study aims to propose simple and relevant multi-physical characterization methods for plant aggregates. Basic and complementary characterizations were carried out on hemp shiv as a reference plant aggregate, and nine by-products available in the South-West part of France, i.e., oleaginous flax shiv, sunflower pith and bark, coriander straw, wheat straw, wheat chaff, corn shuck, miscanthus stem and vine shoot. The basic characterizations performed were those recommended by the TC-RILEM 236 BBM, i.e., particle size distribution, bulk density, water absorption and thermal conductivity. Complementary characterizations have also been proposed, taking into account the possible environment of the binder and the vegetal concrete manufacturing method. The additional tests developed or adapted from previous research assess the following properties: the content of water-soluble compounds at pH 7 and 12, the dry density of plant aggregates compacted in wet state, the real water absorption after compaction and the compression behavior of these compacted aggregates. This complete characterization highlights the distinct behavior of the different agroresources and allows to correlate these characteristics to the use properties of hardened composites.


2021 ◽  
Vol 8 (1) ◽  
pp. 10
Author(s):  
Mark William Cawman ◽  
Patricia Fine-Skalnik

This research article is intended for use as a classroom case study with questions for discussion in International Business. This research analyzes CEMEX and their strategy for globalization. CEMEX is a Mexico founded building materials company that operates in more than fifty countries and maintains trade relationships in over one-hundred nations. In addition to CEMEX creating an international business, CEMEX embraces core values including ethics, integrity, and environmental sustainability. The literature review in this study, documents how CEMEX overcame cultural and political implications, and significant risk to become a significant multinational corporation. The topical focus and purpose of this research is to explore CEMEX critically as a specimen company representing cross-cultural and international business growth. The analysis includes the utilization of the Hofstede Cultural Dimensions framework and the PESTLEEG analysis.


2021 ◽  
Vol 8 (1) ◽  
pp. 10
Author(s):  
Mark William Cawman ◽  
Patricia Fine-Skalnik

This research article is intended for use as a classroom case study with questions for discussion in International Business. This research analyzes CEMEX and their strategy for globalization. CEMEX is a Mexico founded building materials company that operates in more than fifty countries and maintains trade relationships in over one-hundred nations. In addition to CEMEX creating an international business, CEMEX embraces core values including ethics, integrity, and environmental sustainability. The literature review in this study, documents how CEMEX overcame cultural and political implications, and significant risk to become a significant multinational corporation. The topical focus and purpose of this research is to explore CEMEX critically as a specimen company representing cross-cultural and international business growth. The analysis includes the utilization of the Hofstede Cultural Dimensions framework and the PESTLEEG analysis.


2016 ◽  
Vol 861 ◽  
pp. 601-608 ◽  
Author(s):  
Daniela Mackova ◽  
Marcela Spisakova ◽  
Mária Kozlovská ◽  
Jozef Svajlenka

Currently, we are witnessing the significant impact of industrial activity on the environment. A recent study shows that construction is the third largest industry sector in terms of environmental pollution. One option to reduce these negative effects is environmental assessment of buildings, as well as the used building materials. One of the most comprehensive environmental assessment methods is LCA (Life Cycle Assessment), which includes the assessment of impacts within mode ”Cradle-to-gate” which is focused on assessment of a partial product life cycle from resource extraction (cradle) to the factory gate (i.e., before it is transported to the consumer). The aim of this paper is a comparison of the environmental impact of selected material variants applied within modern methods of construction. The comparison will be processed through the results of the case study containing three material variants of family houses construction in term of three selected parameters - embodied energy, global warming potential and acidification potential.


2021 ◽  
Vol 13 (21) ◽  
pp. 11693
Author(s):  
Mayra L. Pazmiño ◽  
Angel D. Ramirez

Pork is one of the proteins of greatest demand worldwide. This study has evaluated the environmental sustainability of pig production by applying the life cycle assessment methodological framework. The system boundaries include feed production, pig production, slaughtering, and slaughterhouse by-product management. Within this context, three scenarios have been proposed: the first related to the management of slaughter by-products in an open dump, the second contemplates a model for using these by-products in a rendering plant, and a third where the environmental burden of slaughterhouse co-products is portioned according to economic allocation. The primary data collected correspond to the period of 2019 for the facilities of a producer in a coastal province of Ecuador. Three functional units were used—“1 kg of pig carcass at the slaughterhouse gate”, “1 kg pig live weigh at the farm gate”, and “1 kg of feed at the plant gate”. The impact categories included were global warming, fossil depletion, marine eutrophication, ozone layer depletion, particulate matter formation, photochemical oxidation formation, and terrestrial acidification. The results revealed that the production of ingredients for feed is the largest contributor to the environmental burden of pig and pork. The rendering of slaughter by-products that avoid the production of other fats and proteins results in a lower environmental impact than the other scenarios in almost all categories.


Author(s):  
Srikanth Devanathan ◽  
Pranav Koushik ◽  
Fu Zhao ◽  
Karthik Ramani

The issue of environmental sustainability, which is unprecedented in both magnitude and complexity, presents one of the biggest challenges faced by modern society. Engineers, including mechanical engineers, can make significant contribution to the development of solutions to this problem by designing products and processes that are more environmentally sustainable. It is critical that engineers take a paradigm shift of product design i.e. from cost and performance centered to balance of economic, environmental, and societal consideration. Although there have been quite a few design for environment (DfE, or ecodesign) tools developed, so far these tools have only achieved limited industrial penetration: they are either too qualitative/subjective to be used by designers with limited experiences, or too quantitative, costly and time consuming and thus cannot be used during the design process specially during the early design stage. This paper develops a novel, semi-quantitative ecodesign tool that targets specially on early design process. The new tool is a combination of environmental life cycle assessment, working knowledge model, and visual tools such as QFD, functional-component matrix, and Pugh chart. Redesign of staplers is selected as a case study to demonstrate the use of the proposed tool. Efforts are on going to confirm that the new design generated using this new tool does have improved environmental performance.


2021 ◽  
Vol 13 (15) ◽  
pp. 8529
Author(s):  
Amna Shibeika ◽  
Maatouk Khoukhi ◽  
Omar Al Khatib ◽  
Nouf Alzahmi ◽  
Shamma Tahnoon ◽  
...  

Due to the scarcity of water and the harsh desert climate of the United Arab Emirates (UAE), water and energy are two of the main challenges for the design of sustainable buildings in the UAE. Relevant literature calls for the consideration of building systems and materials at the design stage to achieve high-performing buildings and to save on the operational costs of the building. The aim of this research was to design a high-performance building that meets the environmental sustainability requirements for water and energy, in the city of Dubai to reflect the technological advancements of the UAE Mars mission. This has been achieved through following an integrated design process, which was mainly focused on the evaluation and specification of the building engineering systems based on performance, besides the goal of achieving visually appealing building with advanced structural design. The performance verification of the final building design, which considered engineering systems design from conception and through the design and detailed design stages, revealed a 15% reduction in water consumption and a 60% reduction in energy consumption. This provides a valuable contribution to architectural engineering practice, by demonstrating a case study for enhancing energy and water efficiency via building design, which consequently contributes to the environmental sustainability of the built environment.


2020 ◽  
Vol 28 (2) ◽  
pp. 95-104
Author(s):  
Mohamed Marzouk

Global interest in sustainable and green building design has been increasing in the last few decades. This interest is strengthened by the fact that sustainable measures help in reducing negative social and environmental impacts of buildings. For that, this paper aims to develop a mixed integer optimization model that aids architects/designers and owner representatives during design stage in selecting building materials taking into consideration costs and risks that are involved in the selection process. The model is developed as a simulation optimization tool based on the Leadership in Energy and Environmental Design (LEED) rating system for new construction. The developed model allows deterministic and probabilistic cost analysis of various design alternatives. In addition, it identifies the least possible cost to gain the LEED credits and the risks associated with materials’ quantities and materials’ unit prices. To illustrate the use of the proposed tool, a case study of an office building project constructed in Egypt is presented. An integrated Fuzzy Monte Carlo Simulation (FMCS) analysis is performed to account for the associated risks of using new materials in the considered case study. The proposed model is capable to capture the cost uncertainty of building materials and to identify the cost and sustainability performance of various building materials by relating the LEED rating system for new construction.


Sign in / Sign up

Export Citation Format

Share Document