scholarly journals Design of Isolated Microgrid System Considering Controllable EV Charging Demand

2020 ◽  
Vol 12 (22) ◽  
pp. 9746
Author(s):  
Sang Heon Chae ◽  
Gi Hoon Kim ◽  
Yeong-Jun Choi ◽  
Eel-Hwan Kim

Microgrid construction is promoted globally to solve the problems of energy inequality in island regions and the use of fossil fuels. In the application of a microgrid system, it is important to calculate the capacities of renewable energy sources and storage systems (ESSs) to ensure economic feasibility. In some microgrids that have recently had environmental challenges, there are island regions where the policy is to consider both the installation of the microgrid system and the supplement of electric vehicles (EV). However, an EV load pattern that does not match the solar radiation pattern may increase the required ESS capacity. Therefore, in this study, we designed and analyzed a method for reducing the microgrid system cost using a controllable EV charging load without the requirements of vehicle-to-grid technology and real-time pricing. The power system operations at similar capacities of photovoltaic and ESS were shown by applying EV charging control steps in 10% increments to analyze the effect of EV charging demand control on the microgrid. As a result of the proposed simulation, the amount of renewable power generation increased by 2.8 GWh over 20 years only by moving the charging load under the same conditions. This is an effect that can reduce CO2 by about 2.1 kTon.

2015 ◽  
Vol 19 (1) ◽  
pp. 167-178
Author(s):  
S.M. Shaahid

The governments world-wide are deliberating to promote renewable energy sources such as wind to mitigate increasing demand of energy and to overcome effects of pollution due to to use of fossil fuels. Integration of wind turbine generators (WTG) with the diesel plants is pursued widely to reduce dependence on fossil-fuels and to reduce carbon emissions. Literature indicates that commercial/residential buildings in the Kingdom of Saudi Arabia (K.S.A) consume an estimated 10 - 40% of the total electric energy generated. The aim of this study is to analyze wind-speed data of Dhahran (East-Coast, K.S.A.) to assess the economic feasibility of utilizing hybrid wind-diesel power systems to meet the load requirements of a typical commercial building (with annual electrical energy demand of 620,000 kWh). The monthly average wind speeds range from 3.3 to 5.6 m/s. The hybrid systems simulated consist of different combinations of 100 kW commercial WTG supplemented with diesel generators. NREL?s (HOMER Energy?s) HOMER software has been employed to perform the techno-economic analysis. The simulation results indicate that for a hybrid system comprising of 100 kW wind capacity together with 175 kW diesel system, the wind penetration (at 37 m hub-height, with 0% annual capacity shortage) is 25%. The cost of generating energy (COE, $/kWh) from this hybrid wind-diesel system has been found to be 0.121 $/kWh (assuming diesel fuel price of 0.1$/liter). The study exhibits that for a given hybrid configuration, the number of operational hours of diesel gensets decreases with increase in wind farm capacity. Emphasis has also been placed on wind penetration, un-met load, energy production and COE, excess electricity generation, percentage fuel savings and reduction in carbon emissions (relative to diesel-only situation) of different hybrid systems, cost break-down of wind-diesel systems, COE of different hybrid systems, etc.


2014 ◽  
Vol 53 (4II) ◽  
pp. 309-325
Author(s):  
Rafi Amir-Ud-Din

Energy crisis in Pakistan had been brewing long before it became an important national issue with the potential to significantly affect the outcome of general elections of 2013. The looming crisis of depleting non-renewable energy sources combined with a feeble economy has lent a new urgency to the search for an energy mix which is sustainable, economically viable and environmentally least hazardous. Fossil fuels with their known adverse environmental impacts dominate the current energy mix of Pakistan. The renewable energy sources remain underutilised despite being cost effective and less hazardous for the environment. A substantial amount of literature has highlighted various dimensions of existing energy sources in Pakistan with a particular emphasis on the environmental impact, the sustainability and the efficiency of various energy sources [see Asif (2009); Basir, et al. (2013); Bhutto, et al. (2012); Mirza, et al. (2009, 2008, 2003); Muneer and Asif (2007); Sheikh (2010) for example]. This study analyses the environmental impact, economic feasibility and efficiency of various energy sources subject to various economic and noneconomic constraints. Section 2 discusses energy security by reviewing various tapped and untapped energy sources besides analysing current energy mix and its future prospects. Section 3 highlights the interaction of energy use and environment. Section 4 discusses two approaches to assess the feasibility of an energy mix: disaggregated and aggregated. The latter approach makes a multidimensional comparison of all the energy sources discussed in this study. Section 5 consists of discussion and concluding remarks.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Joseph Koussa ◽  
Amphun Chaiboonchoe ◽  
Kourosh Salehi-Ashtiani

The increased demand and consumption of fossil fuels have raised interest in finding renewable energy sources throughout the globe. Much focus has been placed on optimizing microorganisms and primarily microalgae, to efficiently produce compounds that can substitute for fossil fuels. However, the path to achieving economic feasibility is likely to require strain optimization through using available tools and technologies in the fields of systems and synthetic biology. Such approaches invoke a deep understanding of the metabolic networks of the organisms and their genomic and proteomic profiles. The advent of next generation sequencing and other high throughput methods has led to a major increase in availability of biological data. Integration of such disparate data can help define the emergent metabolic system properties, which is of crucial importance in addressing biofuel production optimization. Herein, we review major computational tools and approaches developed and used in order to potentially identify target genes, pathways, and reactions of particular interest to biofuel production in algae. As the use of these tools and approaches has not been fully implemented in algal biofuel research, the aim of this review is to highlight the potential utility of these resources toward their future implementation in algal research.


2021 ◽  
Vol 9 ◽  
Author(s):  
Francesco Lo Franco ◽  
Riccardo Mandrioli ◽  
Mattia Ricco ◽  
Vítor Monteiro ◽  
Luís F. C. Monteiro ◽  
...  

The growing penetration of distributed renewable energy sources (RES) together with the increasing number of new electric vehicle (EV) model registrations is playing a significant role in zero-carbon energy communities’ development. However, the ever-larger share of intermittent renewable power plants, combined with the high and uncontrolled aggregate EV charging demand, requires an evolution toward new planning and management paradigms of energy districts. Thus, in this context, this paper proposes novel smart charging (SC) techniques that aim to integrate as much as possible RES generation and EV charging demand at the local level, synergically acting on power flows and avoiding detrimental effects on the electrical power system. To make this possible, a centralized charging management system (CMS) capable of individually modulating each charging power of plugged EVs is presented in this paper. The CMS aims to maximize the charging self-consumption from local RES, flattening the peak power required to the external grid. Moreover, the CMS guarantees an overall good state of charge (SOC) at departure time for all the vehicles without requiring additional energy from the grid even under low RES power availability conditions. Two methods that differ as a function of the EV power flow direction are proposed. The first SC only involves unidirectional power flow, while the second one also considers bidirectional power flow among vehicles, operating in vehicle-to-vehicle (V2V) mode. Finally, simulations, which are presented considering an actual case study, validate the SC effects on a reference scenario consisting of an industrial area having a photovoltaic (PV) plant, non-modulable electrical loads, and EV charging stations (CS). Results are collected and performance improvements by operating the different SC methods are compared and described in detail in this paper.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3260
Author(s):  
Xiaowen Zhan ◽  
Minyuan M. Li ◽  
J. Mark Weller ◽  
Vincent L. Sprenkle ◽  
Guosheng Li

Transitioning from fossil fuels to renewable energy sources is a critical goal to address greenhouse gas emissions and climate change. Major improvements have made wind and solar power increasingly cost-competitive with fossil fuels. However, the inherent intermittency of renewable power sources motivates pairing these resources with energy storage. Electrochemical energy storage in batteries is widely used in many fields and increasingly for grid-level storage, but current battery technologies still fall short of performance, safety, and cost. This review focuses on sodium metal halide (Na-MH) batteries, such as the well-known Na-NiCl2 battery, as a promising solution to safe and economical grid-level energy storage. Important features of conventional Na-MH batteries are discussed, and recent literature on the development of intermediate-temperature, low-cost cathodes for Na-MH batteries is highlighted. By employing lower cost metal halides (e.g., FeCl2, and ZnCl2, etc.) in the cathode and operating at lower temperatures (e.g., 190 °C vs. 280 °C), new Na-MH batteries have the potential to offer comparable performance at much lower overall costs, providing an exciting alternative technology to enable widespread adoption of renewables-plus-storage for the grid.


Author(s):  
V Saravanan ◽  
K. M. Venkatachalam ◽  
M Arumugam ◽  
M.A.K Borelessa ◽  
K.T. M.U. Hemapala

<p>This paper addresses the impact of renewable power generation such as photovoltaic and wind energy in the existing power system operations. Various modeling approaches and power quality/reliability analysis of these renewable energy sources in the electric power system by researchers and research organisations and utilities are outlined and their impacts are assessed. Challenges and protection schemes of renewable power integration into the existing grid are discussed through a detailed literature review and study of renewable integration into the Indian power system are outlined including potential planning and policy actions to support renewable energy integration in India.</p>


Author(s):  
Elmehdi Mabrouk

The Global climate change and the lack of fossil fuels reserves have already had observable effects on the environment. Therefore, an undeniable investment is being made to respond these heavy challenges and to accelerate the momentum towards further embracing the electrification of transportation in smart microgrids, energy efficiency and clean energy production. The paper presents a novel cost-effective management of non-renewable resources of a multi-microgrid system under different operating modes (islanded, connected) with integrating renewable energy sources. Also, we investigate the impact of controlling vehicle-to-grid (V2G) operations on the multi-microgrid system by establishing a coordinated charging control strategy for plug-in electric vehicles (PEVs) with the aim of obtaining the maximum benefit from the grid as well as minimize the overall operating cost of the system. Both, the management of the multi-microgrid system and the EVs charging strategy have been formulated and solved using the Genetic Algorithm (GA), where the obtained results have shown that this method increases the quality, and the efficiency of obtained day-ahead scheduling solutions under any operating mode.


Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1841
Author(s):  
Abdelrahman Saleh Zaky

Biofuels have many environmental and practical benefits as a transportation fuel. They are among the best alternatives to fossil fuels- thanks to their capacity for negative carbon emissions, which is vital for archiving the global ambition of a net-zero economy. However, conventional biofuel production takes place on inland sites and relies on freshwater and edible crops (or land suitable for edible crop production), which has led to the food versus fuel debate. It also suffers technical and economical barriers owing to the energy balance and the cost of production compared with fossil fuels. Establishing a coastal integrated marine biorefinery (CIMB) system for the simultaneous production of biofuels, high-value chemicals, and other co-products could be the ultimate solution. The proposed system is based on coastal sites and relies entirely on marine resources including seawater, marine biomass (seaweed), and marine microorganisms (marine yeasts and marine microalgae). The system does not require the use of arable land and freshwater in any part of the production chain and should be linked to offshore renewable energy sources to increase its economic feasibility and environmental value. This article aims to introduce the CIMB system as a potential vehicle for addressing the global warming issue and speeding the global effort on climate change mitigation as well as supporting the world’s water, food and energy security. I hope these perspectives serve to draw attention into research funding for this approach.


Author(s):  
J Barrett

Current technology advancements have made renewable power generation and electric vehicles feasible in today's market. As these technologies continue to merge into our systems, they create a need for energy storage and greater demand for clean power. The electric vehicle and the grid are going to be integrated due to the charging need of the EV. By developing the technologies together with smart communications, they can help solve issues with a reward or solution for each industry. Vehicle and grid connectivity is of the upmost importance as Electric Vehicles (EV) come online. Communications and infrastructure upgrades are going to be needed as renewables and EV technology develops. Renewable energy production tends to be intermittent and will require storage. Adaptation of the Electric Vehicle depends on a better battery. As we strive to reduce our dependence on fossil fuels the electric vehicles are becoming part of our means of transportation. These changes are creating a greater need for renewable electric generation to power these vehicles and reduce fossil fuel usage. As additional renewable power generation comes onto the grid, the need for storage is increased. Electric vehicles will also create a large demand on the grid for charging the batteries. Utilizing smart charging, vehicle-to-grid, and improved communications can solve these hurdles.


Sign in / Sign up

Export Citation Format

Share Document