scholarly journals Evaluation of GHG Emission Measures Based on Shipping and Shipbuilding Market Forecasting

2021 ◽  
Vol 13 (5) ◽  
pp. 2760
Author(s):  
Yujiro Wada ◽  
Tatsumi Yamamura ◽  
Kunihiro Hamada ◽  
Shinnosuke Wanaka

Greenhouse gas (GHG) emissions from the global shipping sector have been increasing due to global economic growth. The International Maritime Organization (IMO) has set a goal of halving GHG emissions from the global shipping sector by 2050 as compared with 2008 levels, and has responded by introducing several international regulations to reduce the GHG emissions of maritime transportation. The impact of GHG emissions’ regulation and measures to curb them have been evaluated in the IMO’s GHG studies. However, the long-term influence of these GHG emission measures has not yet been assessed. Additionally, the impact of various GHG reduction measures on the shipping and shipbuilding markets has not been considered; accordingly, there is room for improvement in the estimation of GHG emissions. Therefore, in this study, a model to consider GHG emission scenarios for the maritime transportation sector was developed using system dynamics and was integrated into a shipping and shipbuilding market model. The developed model was validated based on actual results and estimation results taken from a previous study. Subsequently, simulations were conducted, allowing us to evaluate the impact and effectiveness of GHG emission-curbing measures using the proposed model. Concretely, we conducted an evaluation of the effects of current and future measures, especially ship speed reduction, transition to liquid natural gas (LNG) fuel, promotion of energy efficiency design index (EEDI) regulation, and introduction of zero-emission ships, for GHG emission reduction. Additionally, we conducted an evaluation of the combination of current and future measures. The results showed that it is difficult to achieve the IMO goals for 2050 by combining only current measures and that the introduction of zero-emission ships is necessary to achieve the goals. Moreover, the limits of ship speed reduction were discussed quantitatively in relation to the maritime market aspect, and it was found that the feasible limit of ship speed reduction from a maritime market perspective was approximately 50%.

OCL ◽  
2019 ◽  
Vol 26 ◽  
pp. 45
Author(s):  
Philippe Dusser

GHG reductions are a major focus of the EU policy. Several regulations have been set in order to meet the EU commitments under the Paris Agreement with an overall reduction of 40% from 1990 level. For the transport sector which is responsible for around 20% of the total GHG emissions, the GHG reductions obligations have been translated by i) reinforced GHG reduction thresholds for biofuels into the recast Renewable Energy Directive RED II; ii) an ambitious target of 30% GHG emission reduction target from 2005 level in the Effort Sharing Regulation (ESR) common to “non-ETS sector” (not covered by the Emission Trading System – ETS) as agriculture, building, waste… and transport. Furthermore, other EU regulations directed to Cars, Vans as well as Heavy Duty Vehicles set GHG emission reduction targets for new vehicle up to 2030. Finally, in its communication “A Clean Planet for All” the EU Commission describes A Strategy for 2050 to achieve a carbon neutral economy. This article addresses also the case of the German “GHG quota” which is a national support system for biofuels and as such is parallel to the European obligations stemming from the RED II renewable energy mandates that are to be met by Germany.


2015 ◽  
Vol 24 (4) ◽  
Author(s):  
Jelena Ariva ◽  
Ants Hannes Viira ◽  
Reet Põldaru ◽  
Jüri Roots

In order to respond to increasing global food demand and provide for national economic growth, the Estonian Dairy Strategy for 2012−2020 aims to achieve a 30% growth in milk production. At the same time, there is a global attempt to reduce greenhouse gas (GHG) emissions. This paper analyses the medium-term (2015−2020) projections for milk production and associated GHG emissions from dairy cows in Estonia. The FAPRI-GOLD type market model of Estonian agriculture, which is used for projections of agricultural production, was supplemented with a module that helps project GHG emissions. The paper demonstrates the endogenisation of GHG emission factors in a relatively general agricultural market model context. The results imply that increasing milk production by 30% by 2020 would jeopardise Estonia’s commitments with regard to agricultural GHG emissions. However, the average GHG emission per tonne of produced milk will decline, thus reducing the “carbon footprint” of milk production.


2018 ◽  
Author(s):  
Brett McPherson ◽  
Mihray Sharip ◽  
Terry Grimmond

Background. Sustainable purchasing can reduce greenhouse gas (GHG) emissions at healthcare facilities (HCF). A previous study found that converting from disposable to reusable sharps containers (DSC, RSC) reduced sharps waste stream GHG by 84% but, in finding transport distances impacted significantly on GHG outcomes, recommended further studies where transport distances are large. This case-study examines the impact on GHG of nation-wide transport distances when a large US health system converted from DSC to RSC. Methods. The study examined the alternate use of DSC and RSC at a large US university hospital where: the source of polymer was distant from the RSC manufacturing plant; both manufacturing plants were over 3,000 km from the HCF; and the RSC disposal plant was considerably further from the HCF than was the DSC disposal plant. Using a “cradle to grave” life cycle assessment (LCA) tool we calculated annual GHG emissions (CO2, CH4, N2O) in metric tonnes of carbon dioxide equivalents (MTCO2eq) to assess the impact on global warming potential (GWP) of each container system. Primary energy input data was used wherever possible and region-specific impact conversions used to calculate GWP of each activity over a 12-month period. Unit process GHG were collated into Manufacture, Transport, Washing, and Treatment & disposal. Emission totals were workload-normalized and analysed using CHI2 test with P ≤0.05 and rate ratios at 95% CL. Results. The hospital reduced its annual GWP by 168 MTCO2eq (-64.5%; p < 0.001), and annually eliminated 50.2 tonnes of plastic DSC and 8.1 tonnes of cardboard from the sharps waste stream. Of the plastic eliminated, 31.8 tonnes were diverted from landfill and 18.4 from incineration. Discussion. Unlike GHG reduction strategies dependent on changes in staff behaviour (waste segregation, recycling, turning off lights, car-pooling, etc), purchasing strategies can enable immediate, sustainable and institution-wide GHG reductions to be achieved. Medical waste containers contribute significantly to the supply chain carbon footprint and, although non-sharp medical waste volumes have decreased significantly with avid segregation, sharps wastes have increased, and can account for 50% of total medical waste volume. Thus converting from DSC to RSC can assist reduce the GWP footprint of the medical waste stream. This study confirmed that large transport distances between polymer manufacturer and container manufacturer; container manufacturer and user; and/or between user and processing facilities, can significantly impact the GWP of sharps containment systems. However, even with large transport distances, we found that a large university health system significantly reduced the GWP of their sharps waste stream by converting from DSC to RSC.


2018 ◽  
Author(s):  
Brett McPherson ◽  
Mihray Sharip ◽  
Terry Grimmond

Background. Sustainable purchasing can reduce greenhouse gas (GHG) emissions at healthcare facilities (HCF). A previous study found that converting from disposable to reusable sharps containers (DSC, RSC) reduced sharps waste stream GHG by 84% but, in finding transport distances impacted significantly on GHG outcomes, recommended further studies where transport distances are large. This case-study examines the impact on GHG of nation-wide transport distances when a large US health system converted from DSC to RSC. Methods. The study examined the alternate use of DSC and RSC at a large US university hospital where: the source of polymer was distant from the RSC manufacturing plant; both manufacturing plants were over 3,000 km from the HCF; and the RSC disposal plant was considerably further from the HCF than was the DSC disposal plant. Using a “cradle to grave” life cycle assessment (LCA) tool we calculated annual GHG emissions (CO2, CH4, N2O) in metric tonnes of carbon dioxide equivalents (MTCO2eq) to assess the impact on global warming potential (GWP) of each container system. Primary energy input data was used wherever possible and region-specific impact conversions used to calculate GWP of each activity over a 12-month period. Unit process GHG were collated into Manufacture, Transport, Washing, and Treatment & disposal. Emission totals were workload-normalized and analysed using CHI2 test with P ≤0.05 and rate ratios at 95% CL. Results. The hospital reduced its annual GWP by 168 MTCO2eq (-64.5%; p < 0.001), and annually eliminated 50.2 tonnes of plastic DSC and 8.1 tonnes of cardboard from the sharps waste stream. Of the plastic eliminated, 31.8 tonnes were diverted from landfill and 18.4 from incineration. Discussion. Unlike GHG reduction strategies dependent on changes in staff behaviour (waste segregation, recycling, turning off lights, car-pooling, etc), purchasing strategies can enable immediate, sustainable and institution-wide GHG reductions to be achieved. Medical waste containers contribute significantly to the supply chain carbon footprint and, although non-sharp medical waste volumes have decreased significantly with avid segregation, sharps wastes have increased, and can account for 50% of total medical waste volume. Thus converting from DSC to RSC can assist reduce the GWP footprint of the medical waste stream. This study confirmed that large transport distances between polymer manufacturer and container manufacturer; container manufacturer and user; and/or between user and processing facilities, can significantly impact the GWP of sharps containment systems. However, even with large transport distances, we found that a large university health system significantly reduced the GWP of their sharps waste stream by converting from DSC to RSC.


2016 ◽  
Vol 7 (2) ◽  
pp. 57-71
Author(s):  
Joko Tri Haryanto

It has been agreed that forestry is a key sector in the effort to tackle global warming. The government has demonstrated actual commitment to reduce GHG emissions by 26% with their own budget and by 41% with international financing. This commitment is set forth in Presidential Decree No. 61 Year 2011. This regulation indicates that one of the largest emitters is the forestry sector. The government has already allocated Specific Allocation Fund (DAK) Forestry in the State Budget annually to support forest rehabilitation. Despite the relatively small amount, the fund allocation is increasing significantly each year. The question is how the allocation for DAK Forestry can be synchronized with the GHG emission reduction target set forth in Presidential Decree No. 61 of 2011. For that reason, this study has been conducted in order to analyze the conformity of DAK Forestry funding with the emission reduction targets set forth in Presidential Decree No. 61 of 2011. By using qualitative descriptive statistical approach, it is known that the use of DAK Forestry fund as from 2010 to 2014 has had a significant alignment in support of GHG emission reduction target set forth in Presidential Decree No. 61 of 2011.


2014 ◽  
Vol 14 (4) ◽  
pp. 1585-1614 ◽  
Author(s):  
Won-Sik Hwang ◽  
Inha Oh ◽  
Jeong-Dong Lee

Abstract The Korean government has recently established national and sectoral mid-term greenhouse gas (GHG) reduction targets. Specifically, the country must reduce its total GHG emissions by 30% compared to business-as-usual (BAU) by 2020. This study has two main purposes. First, the study aims to measure the economic impacts of pursuing and achieving the government’s GHG reduction targets. Second, it aims to estimate each major policy’s potential GHG emission reductions in the various sectors. We use the computable general equilibrium model and develop three scenarios to examine the economic and environmental impacts of Korea’s green growth policies – a baseline scenario wherein the national economy proceeds without green growth policies; scenario A, wherein the government imposes national and sectoral emission reduction targets without adopting green technologies; and scenario B, wherein the government adopts policy and technology as renewable portfolio standard and carbon capture and storage. The simulation results from scenario A indicate that the government’s mid-term targets could pose a significant challenge to Korea’s national economy. In addition, the results from scenario B indicate that low-carbon green policy and technology will play an important role in reducing GHG emissions.


Author(s):  
Boxiao Chen ◽  
Xiuli Chao ◽  
Yan Fu ◽  
Margaret Strumolo ◽  
Michael A. Tamor

Both automakers and electricity generators are facing increasingly more stringent greenhouse gas (GHG) emission targets. With the introduction of plug-in hybrid and electric vehicles, the transportation and electricity generation sectors become connected. This provides an opportunity for both sectors to work jointly to achieve cost efficient reduction of CO2 emissions. Due to the low cost and low carbon content of natural gas (NG), NG enabled vehicles are drawing increasing attention. With GHG targets rapidly decreasing, how to judiciously choose among plug-in hybrid vehicles, electric vehicles, NG-enabled vehicles, and gasoline vehicles to save societal cost is worth serious consideration. On the other hand, gasoline and NG prices play an important role in this decision-making process. In order to estimate the impact of gasoline and NG prices and quantify the benefit of the collaboration between automakers and electricity generators, an optimization model is developed to evaluate the total societal cost and CO2 emissions for both sectors. Various scenario analyses are conducted to understand the cost and capacity planning differences when gasoline and NG prices vary while the two sectors can work jointly or independently to meet the CO2 emission constraints. These results help us understand the impact of gasoline and NG prices in achieving GHG reduction targets for the two major sectors of CO2 emissions in the United States.


2018 ◽  
Vol 9 (3) ◽  
pp. 38 ◽  
Author(s):  
Azadeh Maroufmashat ◽  
Michael Fowler

Transportation accounts for more than 20% of the total Greenouse Gas (GHG) emissions in Canada. Switching from fossil fuels to more environmentally friendly energy sources and to Zero-Emission Vehicles (ZEVs) is a promising option for future transportation but well to wheel emission and charging/refuelling patterns must also be considered. This paper investigates the barriers to and opportunities for electric charging and hydrogen refueling infrastructure incentives in Ontario, Canada and estimates the number of Internal Combustion Engine Vehicles (ICEVs) that would be offset by infrastructure incentives. The paper also assesses the potential of electric and hybrid-electric powertrains to enable GHG reductions, explores the impact of the electricity supply mix for supporting zero-emission vehicles in different scenarios and studies the effect of the utility factor for PHEVs in Ontario. The authors compare the use of electric vehicle charging infrastructures and hydrogen refueling stations regarding overall GHG emission reductions for an infrastructure incentive funded by a 20-million-dollar government grant. The results suggest that this incentive can provide infrastructure that can offset around 9000 ICEVs vehicles using electricity charging infrastructure and 4000–8700 when using hydrogen refuelling stations. Having appropriate limitations and policy considerations for the potential 1.7 million electric-based vehicles that may be in use by 2024 in Ontario would result in 5–7 million tonne GHG avoidances in different scenarios, equivalent to the removal of 1–1.5 million ICEVs from the road.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Michael Ayeah Israel ◽  
Joseph Amikuzuno ◽  
Gideon Danso-Abbeam

Abstract Background The adoption of climate-smart agricultural (CSA) practices is expected to improve farmers’ adaptation to climate change and also increase yields while simultaneously curbing greenhouse gas (GHG) emissions. This paper explores the determinants of smallholder farmers’ participation in GHG-emitting activities. It also estimates the impact of CSA activities on reducing GHG emissions. Methods The findings are based on survey data obtained from 350 smallholder farmers in the East Gonja district of Northern Ghana. We adopted the generalized Poisson regression model in identifying factors influencing farmers’ participation in the GHG emission practices and inverse-probability-weighted regression adjustment (IPWRA) to estimate the impact of CSA adoption on GHG emissions. Results Most farming households engaged in at least one emission activity. The findings of the generalized Poisson model found that wealthier households, higher education, and households with access to extension services were less likely to participate in GHG emission activities. There was also evidence that CSA adoption significantly reduces GHG emissions. Conclusion Advocacy in CSA adoption could be a necessary condition for environmental protection through the reduction of GHG emissions.


2018 ◽  
Author(s):  
Brett McPherson ◽  
Mihray Sharip ◽  
Terry Grimmond

Background. Sustainable purchasing can reduce greenhouse gas (GHG) emissions at healthcare facilities (HCF). A previous study found that converting from disposable to reusable sharps containers (DSC, RSC) reduced sharps waste stream GHG by 84% but, in finding transport distances impacted significantly on GHG outcomes, recommended further studies where transport distances are large. This case-study examines the impact on GHG of nation-wide transport distances when a large US health system converted from DSC to RSC. Methods. The study examined the alternate use of DSC and RSC at a large US university hospital where: the source of polymer was distant from the RSC manufacturing plant; both manufacturing plants were over 3,000 km from the HCF; and the RSC disposal plant was considerably further from the HCF than was the DSC disposal plant. Using a “cradle to grave” life cycle assessment (LCA) tool we calculated annual GHG emissions (CO2, CH4, N2O) in metric tonnes of carbon dioxide equivalents (MTCO2eq) to assess the impact on global warming potential (GWP) of each container system. Primary energy input data was used wherever possible and region-specific impact conversions used to calculate GWP of each activity over a 12-month period. Unit process GHG were collated into Manufacture, Transport, Washing, and Treatment & disposal. Emission totals were workload-normalized and analysed using CHI2 test with P ≤0.05 and rate ratios at 95% CL. Results. The hospital reduced its annual GWP by 168 MTCO2eq (-64.5%; p < 0.001), and annually eliminated 50.2 tonnes of plastic DSC and 8.1 tonnes of cardboard from the sharps waste stream. Of the plastic eliminated, 31.8 tonnes were diverted from landfill and 18.4 from incineration. Discussion. Unlike GHG reduction strategies dependent on changes in staff behaviour (waste segregation, recycling, turning off lights, car-pooling, etc), purchasing strategies can enable immediate, sustainable and institution-wide GHG reductions to be achieved. Medical waste containers contribute significantly to the supply chain carbon footprint and, although non-sharp medical waste volumes have decreased significantly with avid segregation, sharps wastes have increased, and can account for 50% of total medical waste volume. Thus converting from DSC to RSC can assist reduce the GWP footprint of the medical waste stream. This study confirmed that large transport distances between polymer manufacturer and container manufacturer; container manufacturer and user; and/or between user and processing facilities, can significantly impact the GWP of sharps containment systems. However, even with large transport distances, we found that a large university health system significantly reduced the GWP of their sharps waste stream by converting from DSC to RSC.


Sign in / Sign up

Export Citation Format

Share Document