scholarly journals Parameter Optimization and Effect Analysis of Low-Pressure Abrasive Water Jet (LPAWJ) for Paint Removal of Remanufacturing Cleaning

2021 ◽  
Vol 13 (5) ◽  
pp. 2900
Author(s):  
Sheng Xiong ◽  
Xiujie Jia ◽  
Shuangshuang Wu ◽  
Fangyi Li ◽  
Mingliang Ma ◽  
...  

As an environmentally friendly method, water jet (WJ) technology plays a significant role in the field of remanufacturing cleaning. The cleaning capacity of a WJ is severely restricted by the water pressure, while the impact force will be too large and may damage the cleaned substrate as well as cause energy waste if the pressure is too high. However, by adding abrasives, the cleaning capacity of a low-pressure water jet (LPWJ) will be considerably improved. Although abrasive water jet (AWJ) technology has been used in mechanical machining for decades, very limited research work can be found in the literature for remanufacturing cleaning. In this paper, the role of abrasives in low-pressure abrasive water jet (LPAWJ) cleaning was described. Cleaning performance with different parameters (abrasive feed rate condition, water pressure and standoff distance) in paint removal was experimentally investigated by using the Taguchi design of experiment. The experimental results indicated that the water pressure was the most dominant factor and the optimal parameter combination was the second feed rate condition, 9 MPa water pressure and 300 mm standoff distance. The influence law between the cleaning performance and various factors was explored, which can provide remanufacturers with directions in selection of the optimal parameters in the LPAWJ cleaning process. By designing contrast experiments, the results showed that the cleaning capacity of an LPAWJ is better than that of a pure LPWJ and the residual effect in terms of changes in surface roughness, residual stress and morphology is a little larger.

Author(s):  
Ameer Jalil Nader ◽  
K. Shather Saad

Abrasive water jet (AWJ) is one of the most advanced and valuable non-traditional machining processes because of its massive advantages of removing metals ranging from hard to soft. This paper focused on studying the influence of jet pressure, feed rate and standoff distance on surface roughness during cutting carbon steel using abrasive water jet cutting. A surface roughness device assessed the surface roughness by performing sixteen experiments to identify the distinct texture of the surface. Based on the experiences, the best surface roughness value was 3.14 μm at jet pressure 300 MPa, standoff distance 4mm and feed rate 30 mm/min. The Taguchi method was introduced to implement the experiments and indicate the most influential process parameters on average surface roughness. The experimental results reveal that feed rate has a significant effect on average surface roughness.


2014 ◽  
Vol 1029 ◽  
pp. 176-181 ◽  
Author(s):  
Ion Aurel Perianu ◽  
Ion Mitelea ◽  
Viorel Aurel Şerban

In this paper research elements regarding the effect of water pressure variation on cut surfaces quality are presented in the field of abrasive water jet cutting of materials hard to process by machining such as austenitic stainless steels, in this case with a thickness of 20 mm. Selection of the optimal cutting process based on technical and economic criteria takes into consideration the type and thickness of the targeted material and also the physical and geometrical quality requirements. The present paper contains experimental research results regarding abrasive water jet cutting of austenitic stainless steel EN 1.4306 (ASTM 304 L) at different values of water pressure. The abrasive material used is Garnet with particle granulation 80 Mesh. By making roughness measurements and hardness examinations of the cut surface an evaluation will be made of the surface quality defining the optimal pressure values.


Author(s):  
P. J. Borkowski ◽  
J. A. Borkowski

Novel method for the 3D shaping of different materials using a high-pressure abrasive water jet is presented in the paper. For the steering movement process of the jet, a principle similar to the raster image way of record and readout was used. However, respective colors of pixels of such a bitmap are connected with adequate jet feed rate that causes erosion of material with adequate depth. Thanks to that innovation, one can observe spatial imaging of the object. Theoretical basis as well as spatial model of material shaping including steering program is presented in. There are also presented experimental erosion results as well as practical examples of the object’s bas-relief made of metal.


2013 ◽  
Vol 837 ◽  
pp. 196-200
Author(s):  
Carol Schnakovszky ◽  
Eugen Herghelegiu ◽  
Crina Radu ◽  
Ion Cristea

Abrasive water jet processing is one of the newest unconventional technologies. It can be used to cut different metallic materials (steel, titanium alloys, aluminium alloys, brass) or non-metallic materials (wood, plastics, glass, stone, granite etc.). Therefore, this technology can be successfully applied in different industries as: food industry, wood industry, aeronautic industry, automobile industry, mining industry. Between the advantageous of abrasive water jet processing technology it is worth noticing the following: it is rapid, very small processing forces are generated, it is silent, no thermal distortions occur. The aim of the current paper was to determine the influence of the feed rate on the quality of surfaces processed by AWJ at high pressure. The parameters that quantified the quality of the processed surface were those defined in the ISO/WD/TC 44 N 1770 standard: width of the processed surface at the jet inlet (Li), width of the processed surface at the jet outlet (Lo), deviation from perpendicularity (u), inclination angle (α) and roughness (Ra).


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Deepak Doreswamy ◽  
Basavanna Shivamurthy ◽  
Devineni Anjaiah ◽  
N. Yagnesh Sharma

In the present research work, the effect of abrasive water jet (AWJ) machining parameters such as jet operating pressure, feed rate, standoff distance (SOD), and concentration of abrasive on kerf width produced on graphite filled glass fiber reinforced epoxy composite is investigated. Experiments were conducted based on Taguchi’s L27 orthogonal arrays and the process parameters were optimized to obtain small kerf. The main as well as interaction effects of the process parameters were analyzed using the analysis of variance (ANOVA) and regression models were developed to predict kerf width. The results show that the operating pressure, the SOD, and the feed rate are found to be significantly affecting the top kerf width and their contribution to kerf width is 24.72%, 12.38%, and 52.16%, respectively. Further, morphological study is made using scanning electron microscope (SEM) on the samples that were machined at optimized process parameters. It was observed that AWJ machined surfaces were free from delamination at optimized process parameters.


2014 ◽  
Vol 1017 ◽  
pp. 228-233 ◽  
Author(s):  
Yong Wang ◽  
Hong Tao Zhu ◽  
Chuan Zhen Huang ◽  
Jun Wang ◽  
Peng Yao ◽  
...  

Abrasive water jet machining is considered as a promising technique in hard and brittle material processing. This paper studies the erosion performance of the alumina ceramics in the different process parameters. In the erosion experiments, alumina ceramics wafers were eroded by the abrasive waterjet machining. The single factor experiments were carried out to understand the effect of different process parameters (jet impact angle, standoff distance, water pressure, abrasive particle diameter) on the material removal rate (MRR), the removal depth and surface roughness (Ra). The experimental results can provide guidance for alumina ceramics abrasive water jet cutting and polishing.


2015 ◽  
Vol 669 ◽  
pp. 228-234 ◽  
Author(s):  
Anton Panda ◽  
Marek Prislupčák ◽  
Jozef Jurko ◽  
Tibor Krenický ◽  
Marek Jančík

AWJ abrasive water jet belongs to the unconventional methods of machining. Waterjet offers a number of advantages over other cutting methods. There is no heat or chemical material damage, high accuracy and precision, the ability to cut any material and others. Despite many advantages of AWJ has some technical elements that can be improved and optimized. This article deals with effect of vibration on the technological head and consequently wears. The aim of the experiments is to find the most appropriate feed rate, which extends the life of the technological head.


2014 ◽  
Vol 616 ◽  
pp. 191-199 ◽  
Author(s):  
Marek Prislupčák ◽  
Anton Panda ◽  
Marek Jančík ◽  
Iveta Pandová ◽  
Peter Orendáč ◽  
...  

The main effort of each technological process is not only to reduce the costs, but also to reduce the impact on the environment. The technology of abrasive water jet is one of the methods of division and cutting materials with the lowest impact on the environment, since water is the cutting tool, in our case with the addition of an abrasive. The aim of the measurement was the observation (examination) and evaluation of the vibration impact on the technological head in the technology of abrasive water jet when changing the selected technological parameters, namely the feed rate of the technological head. The experiments were carried out on one kind of material - steel HARDOX 500 with a thickness of 10 mm. The impact of the change of the technological head’s feed rate (100, 50, mm/min) on the size of the vibration acceleration amplitude and its frequency were examined. A database was created from the measured vibration values on the technological head and from that database the data was evaluated in selected softwares (LabVIEW, SignalExpress a Microsoft Excel). Graphical dependencies, frequency spectra covers and covers comparison graph were created from which new findings and conclusions were formulated.


Sign in / Sign up

Export Citation Format

Share Document