scholarly journals Thermal Comfort in Places of Worship within a Mediterranean Climate

2021 ◽  
Vol 13 (13) ◽  
pp. 7233
Author(s):  
Robert C. Vella ◽  
Francisco Javier Rey Martinez ◽  
Charles Yousif ◽  
Liberato Camilleri

This paper investigates the relationship between the actual thermal comfort levels measured according to EN 16798-1 standard and the expected thermal comfort of attendees in five parish churches throughout 2018. This is carried out through statistical analysis of qualitative research based on questionnaire responses from church goers and quantitative research based on indoor measured data. This investigation includes the gathering of scientific data relating to temperature and relative humidity together with statistical data through thermal sensation surveys (TSSs). Thus, this study provides first-hand information about occupants’ diversities of thermal sensations and dynamic behaviour adaptations to the intricate environment within churches. Results determine that a significant correlation exists between the actual thermal comfort levels measured according to EN 16798-1 standard and the expected thermal comfort perceived by the church attendees in most of the parish churches under review. Analysis of the sources of discomfort and suggestions made by the occupants revealed that passive design measures contribute towards improved indoor thermal conditions, reduced energy demand and lower carbon emissions. This information provides assurance for optimised decision-making methods, used to generate accurate solutions for policy-makers, architects and engineers, with an understanding of practical applications of passive measures for places of worship. Moreover, the paper provides insight on indoor comfort levels in places of worship within a Mediterranean context, which is insufficiently addressed by scholars at a global level.

Buildings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 326
Author(s):  
Wiwik Budiawan ◽  
Kazuyo Tsuzuki

Thermal comfort is crucial in satisfaction and maintaining quality sleep for occupants. In this study, we investigated the comfort temperature in the bedroom at night and sleep quality for Indonesian students during summer and winter. Eighteen male Indonesian students aged 29 ± 4 years participated in this study. The participants had stayed in Japan for about six months. We evaluated the sleep parameters using actigraphy performed during summer and winter. All participants completed the survey regarding thermal sensation, physical conditions, and subjective sleepiness before sleep. The temperature and relative humidity of participants’ bedrooms were also measured. We found that the duration on the bed during winter was significantly longer than that during summer. However, sleeping efficiency during winter was significantly worse than that during summer. The bedroom temperature of the participants was in the range of comfort temperature in Indonesia. With the average bedroom air temperature of 22.2 °C, most of the participants still preferred “warm” and felt “slightly comfortable” during winter. The average comfort temperature each season calculated using the Griffiths method was 28.1 °C during summer and 23.5 °C during winter. In conclusion, differences in adaptive action affect bedroom thermal conditions. Furthermore, habits encourage the sleep performance of Indonesian students.


2021 ◽  
Vol 13 (3) ◽  
pp. 1257
Author(s):  
Luis Godoy-Vaca ◽  
E. Catalina Vallejo-Coral ◽  
Javier Martínez-Gómez ◽  
Marco Orozco ◽  
Geovanna Villacreses

This work aims to estimate the expected hours of Predicted Medium Vote (PMV) thermal comfort in Ecuadorian social housing houses applying energy simulations with Phase Change Materials (PCMs) for very hot-humid climates. First, a novel methodology for characterizing three different types of social housing is presented based on a space-time analysis of the electricity consumption in a residential complex. Next, the increase in energy demand under climate influences is analyzed. Moreover, with the goal of enlarging the time of thermal comfort inside the houses, the most suitable PCM for them is determined. This paper includes both simulations and comparisons of thermal behavior by means of the PMV methodology of four types of PCMs selected. From the performed energy simulations, the results show that changing the deck and using RT25-RT30 in walls, it is possible to increase the duration of thermal comfort in at least one of the three analyzed houses. The applied PCM showed 46% of comfortable hours and a reduction of 937 h in which the thermal sensation varies from “very hot” to “hot”. Additionally, the usage time of air conditioning decreases, assuring the thermal comfort for the inhabitants during a higher number of hours per day.


Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1531 ◽  
Author(s):  
Roberto Robledo-Fava ◽  
Mónica C. Hernández-Luna ◽  
Pedro Fernández-de-Córdoba ◽  
Humberto Michinel ◽  
Sonia Zaragoza ◽  
...  

In the present work, we analyze the influence of the designer’s choice of values for the human metabolic index (met) and insulation by clothing (clo) that can be selected within the ISO 7730 for the calculation of the energy demand of buildings. To this aim, we first numerically modeled, using TRNSYS, two buildings in different countries and climatologies. Then, we consistently validated our simulations by predicting indoor temperatures and comparing them with measured data. After that, the energy demand of both buildings was obtained. Subsequently, the variability of the set-point temperature concerning the choice of clo and met, within limits prescribed in ISO 7730, was analyzed using a Monte Carlo method. This variability of the interior comfort conditions has been finally used in the numerical model previously validated, to calculate the changes in the energy demand of the two buildings. Therefore, this work demonstrated that the diversity of possibilities offered by ISO 7730 for the choice of clo and met results, depending on the values chosen by the designer, in significant differences in indoor comfort conditions, leading to non-negligible changes in the calculations of energy consumption, especially in the case of big buildings.


2020 ◽  
pp. 1420326X2092552
Author(s):  
Yang Zhang ◽  
Wenxuan Yu ◽  
Youli Li ◽  
Han Li

In this article, a comparative study on the outdoor air pollutant prevention and indoor thermal comfort for different types of ventilation was carried out. Both objective experiment, subjective experiment and computational fluid dynamics (CFD) simulation were conducted to investigate the differences in air pollutant prevention and thermal comfort between four common ventilation methods, namely supplying on the ceiling and returning on the ceiling (SC-RC), supplying on the ceiling and returning on the side wall (SC-RSW), supplying on the side wall and returning on the ceiling (SSW-RC), and supplying on the side wall and returning on the side wall (SSW-RSW). Results show that SSW-RSW can provide the highest indoor air quality according to the indoor average PM2.5 concentration. Overall thermal sensation was introduced to evaluate the indoor comfort under the four ventilation methods. The voting results show that the indoor thermal comfort can be enhanced by 29–36% under SSW-RSW and SSW-RC. Therefore, SSW-RSW is more suitable for providing a healthy and comfortable indoor environment.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ga Yoon Choi ◽  
Hwan Sung Kim ◽  
Hyungkyoo Kim ◽  
Jae Seung Lee

Purpose In cities with high density, heat is often trapped between buildings which increases the frequency and intensity of heat events. Researchers have focused on developing strategies to mitigate the negative impacts of heat in cities. Adopting green infrastructure and cooling pavements are some of the many ways to promote thermal comfort against heat. The purpose of this study is to improve microclimate conditions and thermal comfort levels in high-density living conditions in Seoul, South Korea. Design/methodology/approach This study compares six design alternatives of an apartment complex with different paving and planting systems. It also examines the thermal outcome of the alternatives under normal and extreme heat conditions to suggest strategies to secure acceptable thermal comfort levels for the inhabitants. Each alternative is analyzed using ENVI-met, a software program that simulates microclimate conditions and thermal comfort features based on relationships among buildings, vegetation and pavements. Findings The results indicate that grass paving was more effective than stone paving in lowering air temperature and improving thermal comfort at the near-surface level. Coniferous trees were found to be more effective than broadleaf trees in reducing temperature. Thermal comfort levels were most improved when coniferous trees were planted in paired settings. Practical implications Landscape elements show promise for the improvement of thermal conditions because it is much easier to redesign landscape elements, such as paving or planting, than to change fixed urban elements like buildings and roads. The results identified the potential of landscape design for improving microclimate and thermal comfort in urban residential complexes. Originality/value The results contribute to the literature by examining the effect of tree species and layout on thermal comfort levels, which has been rarely investigated in previous studies.


2020 ◽  
Vol 10 (3) ◽  
pp. 893 ◽  
Author(s):  
Laura Cirrincione ◽  
Maria La Gennusa ◽  
Giorgia Peri ◽  
Gianfranco Rizzo ◽  
Gianluca Scaccianoce ◽  
...  

In the line of pursuing better energy efficiency in human activities that would result in a more sustainable utilization of resources, the building sector plays a relevant role, being responsible for almost 40% of both energy consumption and the release of pollutant substances in the atmosphere. For this purpose, techniques aimed at improving the energy performances of buildings’ envelopes are of paramount importance. Among them, green roofs are becoming increasingly popular due to their capability of reducing the (electric) energy needs for (summer) climatization of buildings, hence also positively affecting the indoor comfort levels for the occupants. Clearly, reliable tools for the modelling of these envelope components are needed, requiring the availability of suitable field data. Starting with the results of a case study designed to estimate how the adoption of green roofs on a Sicilian building could positively affect its energy performance, this paper shows the impact of this technology on indoor comfort and energy consumption, as well as on the reduction of direct and indirect CO2 emissions related to the climatization of the building. Specifically, the ceiling surface temperatures of some rooms located underneath six different types of green roofs were monitored. Subsequently, the obtained data were used as input for one of the most widely used simulation models, i.e., EnergyPlus, to evaluate the indoor comfort levels and the achievable energy demand savings of the building involved. From these field analyses, green roofs were shown to contribute to the mitigation of the indoor air temperatures, thus producing an improvement of the comfort conditions, especially in summer conditions, despite some worsening during transition periods seeming to arise.


2020 ◽  
Vol 172 ◽  
pp. 06001
Author(s):  
Håkon Solberg ◽  
Kari Thunshelle ◽  
Peter Schild

An increasing part of modern building's energy demand is due to cooling. An ongoing research project investigates the possibility to reduce the energy consumption from cooling by utilizing an individually controlled active ventilation diffuser mounted in the ceiling. This study looks at thermal sensation and thermal comfort for 21 test persons exposed to an innovative user controlled active ventilation valve, in a steady and thermally uniform climate chamber. Furthermore, the relationship between biometric data from the test persons skin temperature and sweat, and the test persons thermal sensation scores has been investigated. Each test person was exposed to three different room temperatures in the climate chamber, 24°C, 26°C and 28°C respectively, to simulate typical hot summer conditions in an office in Norway. At a room temperature of 26°C it was possible to achieve acceptable thermal comfort for most test persons with this solution, but higher air velocity than 0.75 m/s around the test persons bodies at room temperatures of 28°C is required to ensure satisfactory thermal comfort.


1983 ◽  
Vol 27 (8) ◽  
pp. 751-756
Author(s):  
David A. VanDyke ◽  
Frederick H. Rohles ◽  
Michael P. Webster

To determine the effectiveness of a small fan in enhancing thermal comfort in an open office, eight subjects were studied at 24.4 C (76F), 26.1 C (79F), and 27.8 C (82F) (all at 50% RH), in an environmental laboratory where each workstation was equipped with a small variable speed fan. Control trials were run at all three temperatures without the use of the fan. Three subjective responses were measured: thermal sensation (a nine category rating scale), thermal comfort (a seven pair semantic differential scale), and temperature preference. During fan tests, subjects were allowed to adjust the fan speed to their preference at 15 minute intervals. Results showed that use of the fan could allow a 3°F temperature increase while maintaining the same comfort level, or increase comfort at temperatures of 79°F and up. The 3°F increase in temperature would result in a 9% energy savings, based on the National Bureau of Standards suggestion of a reduction in air conditioning energy demand of 6% per °C or 3% per °F. The study also shows that users prefer a fan that is adjustable in speed and placement.


Author(s):  
Lee Chusak ◽  
Andrew Harris ◽  
Ramesh Agarwal

Using Computational Fluid Dynamics (CFD) software, three different cooling systems used in contemporary office environments are modeled to compare energy consumption and thermal comfort levels. Incorporating convection and radiation technologies, full-scale models of an office room compare arrangements for (a) an all-air overhead system (mixing ventilation), (b) an all-air raised floor system (displacement ventilation), and (c) a combined air and hydronic radiant system (displacement ventilation with a chilled ceiling). The computational domain for each model consists of one isothermal wall (simulating an exterior wall of the room) and adiabatic conditions for the remaining walls, floor, and ceiling (simulating interior walls of the room). Two sets of computations were conducted. The first set of computations utilized a constant temperature isothermal exterior wall, while the second set utilized an isothermal wall that changed temperatures as a function of time simulating the temperature changes on the exterior wall of a building throughout a 24 hour period. Results show superior thermal comfort levels as well as substantial energy savings can be accrued using the displacement ventilation, especially the displacement ventilation with a chilled ceiling over the conventional mixing ventilation system.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5388
Author(s):  
Hao Sun ◽  
Carlos Jimenez-Bescos ◽  
Murtaza Mohammadi ◽  
Fangliang Zhong ◽  
John Kaiser Calautit

Natural ventilation is an energy-efficient way to provide fresh air and enhance indoor comfort levels. The wind-driven natural ventilation in courtyards has been investigated by many researchers, particularly the influence of the spatial configuration and environmental parameters on the ventilation and thermal comfort performance. However, previous research has mainly focused on the courtyard region instead of the indoor spaces surrounding it. Additionally, as a microclimate regulator, courtyards are rarely assessed in terms of the impact of vegetation, including its impact on energy consumption and thermal comfort. Evapotranspiration from vegetation can help lower air temperature in the surrounding environment and, therefore, its influence on the ventilation and thermal comfort in buildings with courtyards should be evaluated. The present study investigates the impact of vegetation on the aero-thermal comfort conditions in a courtyard and surrounding buildings in hot climates. Computational fluid dynamics was employed to evaluate the aero-thermal comfort conditions of the courtyard and surrounding buildings with different configurations of vegetation. The modeling was validated using previous works’ experimental data, and good agreement was observed. Thermal comfort indices were used to assess thermal performance. The study also evaluated the cover, height and planting area of vegetation in the courtyard. The results of this study can help develop tools that can assist the addition of vegetation in courtyards to maximize their effects. Future works will focus on looking at the influence of the strategies on different designs and layouts of courtyards.


Sign in / Sign up

Export Citation Format

Share Document