scholarly journals Sustainable Viticulture on Traditional ‘Baran’ Training System in Eastern Turkey

2021 ◽  
Vol 13 (18) ◽  
pp. 10236
Author(s):  
Muhammed Kupe ◽  
Sezai Ercisli ◽  
Mojmir Baron ◽  
Jiri Sochor

Erzincan plain is one of the most fascinating regions in Turkey for plant biodiversity. The area is very rich in terms of gene, species and ecosystem diversity. Having a number of natural habitats, mountains, etc., the region is one of the richest regions in Turkey for plant endemism as well. In northern parts of the region, in particular in Üzümlü, Bayırbağ and Pişkidağ districts, grape production dominates agriculture production and the famous ‘Karaerik’ grape cultivar has been cultivated for a long time on the very special traditional ‘Baran’ training system to avoid cold damage that occurs in winter months. The cultivar is harvested between 1 September and 1 October according to altitude in the region. The cultivar is well known in Turkey and there is a great demand for this cultivar in Turkey due to its perfect berry characteristics. In this study, yield, marketable product, cluster weight, cluster form, organic acids, specific sugars and sensory characteristics of the ‘Karaerik’ grape cultivar grown in three altitudes (1200 m a.s.l., 1400 m a.s.l. and 1600 m a.s.l., respectively) in Üzümlü district were investigated. For each altitude, grape clusters were sampled from ten vineyards and an average sample was formed. Marketable product, cluster weight, cluster form, organic acids and specific sugars were determined on those samples. Yield was determined as per decare. Sensory characteristics of samples were determined by five expert panelists. Results showed that the cluster weight was the highest in lower altitude and increasing altitude formed a more conical cluster form compared to winged cylindrical clusters at lower altitudes. The highest yield (740 kg per decare) was obtained in 1200 m a.s.l. and was followed by 1400 m a.s.l. (682 kg per decare) and 1600 m a.s.l. (724 kg per decare), respectively. Altitude strongly affected sugar and organic acid composition and ratio in berries of the ‘Karaerik’ grape. Fructose and tartaric acid were the main sugar and organic acid at all altitudes and were found between 10.04–14.02 g/100 g and 2.17–3.66 g/100 g, respectively. Sensory scores were also the highest at lower altitudes and decreased parallel to altitude increase.

2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 209-210
Author(s):  
Casey L Bradley ◽  
Jon Bergstrom ◽  
Jeremiah Nemechek ◽  
J D Hahn

Abstract A subset of 720 weaned pigs (6.44 ± 0.1 kg, PIC genetics, approximately 21-d of age) were used in a 42-d trial with a 2x3 factorial design evaluating the effects of adding organic acid (OA) blends [factor 1 = no organic acid (NO), Acid Pak 1 (AP1), Acid Pak 2 (AP2)] to diets with or without higher levels of Zn or Cu [factor 2 = +/-PZC] on pig performance. Pigs were allotted 10 pigs/pen to 12 weight blocks and randomly assigned the six dietary treatments. The +PZC diets contained 3000 ppm Zn (d 0-7), 2000 ppm Zn (d 8-21), and 250 ppm Cu (d 21-42) and -PZC diets contained 95 ppm Zn and 20 ppm Cu (d 0-42). The AP1 and AP2 diets used 0.9% of 2 acid premixes (d 0-21), and 0.45% of the premixes (day 22-42). AP1 provided 0.5% benzoic acid, 0.07% sodium butyrate, and 0.025% phosphoric acid (day 0-21) and half those levels (day 22-42). AP2 included the same acids as AP1 but at half the rate and combined with 7 other organic acids and carvacrol. From d 0-21, ADG, ADFI, and G:F were improved (P< 0.01) by +PZC compared to -PZC and by AP1 or AP2 compared to NO (P< 0.02). Overall (d 0-42), ADG and G:F were improved (P< 0.01) by +PZC compared to -PZC and by AP1 or AP2 compared to NO (P< .010). Data from this trial indicate that performance was improved by the addition of both OA and PZC. However, pigs fed OA and -PZC performed similarly to those fed NO and +PZC in the post-weaning period. In summary, regardless of the acid combination, organic acid supplementation has the potential to improve growth performance in weaned pigs.


1988 ◽  
Vol 15 (4) ◽  
pp. 557 ◽  
Author(s):  
MJ Canny ◽  
ME Mccully

Three methods of sampling xylem sap of maize roots were compared: sap bleeding from the stem cut just above the ground; sap bleeding from the cut tops of roots still undisturbed in the ground; and sap aspirated from excavated roots under reduced pressure. The bleeding saps were often unobtainable. When their composition was measured with time from cutting, the concentrations of the major solutes approximately doubled in 2 h. Aspirated sap was chosen as the most reliable sample of root xylem contents. Solute concentrations of the saps showed great variability between individual roots for all solutes, but on average the concentrations found (in �mol g-1 sap) were: total amino acids, 1.8; nitrate, 1.8; sugars (mainly sucrose), 5.4; total organic acids, 18.3. Individual amino acids also varied greatly between roots. Glutamine, aspartic acid and serine were generally most abundant. The principal organic acid found was malic, approximately 8 �mol g-1. From these analyses the ratios of carbon in the fractions (sugars : amino acids : organic acids) = (44 : 6 : 50). 14Carbon pulse fed to a leaf appeared in the root sap within 30 min, rose to a peak at 4-6 h, and declined slowly over a week. During all this time the neutral, cation and anion fractions were sensibly constant in the proportions 86 : 10 : 4. The 14C therefore did not move towards the equilibrium of 12C-compounds in the sap. It is argued that the results do not support a hypothesis of formation of amino carbon from recent assimilate and reduced nitrate in the roots and an export of this to the shoot in the transpiration stream.


2018 ◽  
Author(s):  
Theodora Nah ◽  
Hongyu Guo ◽  
Amy P. Sullivan ◽  
Yunle Chen ◽  
David J. Tanner ◽  
...  

Abstract. The implementation of stringent emission regulations has resulted in the decline of anthropogenic pollutants including sulfur dioxide (SO2), nitrogen oxides (NOx) and carbon monoxide (CO). In contrast, ammonia (NH3) emissions are largely unregulated, with emissions projected to increase in the future. We present real-time aerosol and gas measurements from a field study conducted in an agricultural-intensive region in the southeastern U.S. during the fall of 2016 to investigate how NH3 affects particle acidity and SOA formation via the gas-particle partitioning of semi-volatile organic acids. Particle water and pH were determined using the ISORROPIA-II thermodynamic model and validated by comparing predicted inorganic HNO3-NO3− and NH3-NH4+ gas-particle partitioning ratios with measured values. Our results showed that despite the high NH3 concentrations (study average 8.1 ± 5.2 ppb), PM1 were highly acidic with pH values ranging from 0.9 to 3.8, and a study-averaged pH of 2.2 ± 0.6. PM1 pH varied by approximately 1.4 units diurnally. Formic and acetic acids were the most abundant gas-phase organic acids, and oxalate was the most abundant particle-phase water-soluble organic acid anion. Measured particle-phase water-soluble organic acids were on average 6 % of the total non-refractory PM1 organic aerosol mass. The measured molar fraction of oxalic acid in the particle phase (i.e., particle-phase oxalic acid molar concentration divided by the total oxalic acid molar concentration) ranged between 47 and 90 % for PM1 pH 1.2 to 3.4. The measured oxalic acid gas-particle partitioning ratios were in good agreement with their corresponding thermodynamic predictions, calculated based on oxalic acid’s physicochemical properties, ambient temperature, particle water and pH. In contrast, gas-particle partitioning of formic and acetic acids were not well predicted for reasons currently unknown. For this study, higher NH3 concentrations relative to what has been measured in the region in previous studies had minor effects on PM1 organic acids and their influence on the overall organic aerosol and PM1 mass concentrations.


PEDIATRICS ◽  
1968 ◽  
Vol 42 (2) ◽  
pp. 303-311
Author(s):  
R. Torres-Pinedo ◽  
E. Conde ◽  
G. Robillard ◽  
M. Maldonado

Saline and glucose-saline solutions were instilled into the distal colons of infants with acute infectious diarrhea. Samples of the fluid were obtained at hourly intervals. Clear-cut differences in compositional changes were observed with the saline and glucose-saline solutions. The net effects induced by glucose were: (1) generation of organic acids and subsequent formation of poorly absorbable organic acid salts, and (2) osmotic inflow of water. The overall process led to a net gain of hydrogen ion by the body fluids, decrease in sodium absorption, augmented potassium loss, and net increase in volume of the colonic fluid.


1999 ◽  
Vol 62 (1) ◽  
pp. 51-56 ◽  
Author(s):  
MOSFFER M. AL-DAGAL ◽  
WAEL A. BAZARAA

Microbiological and sensory characteristics of treated whole and peeled shrimp from the east coast of Saudi Arabia were evaluated. Shrimp samples were treated with organic acid salts with or without Bifidobacterium breve culture and stored in ice. Peeling alone extended the microbiological shelf life by 4 days. Treatment of whole shrimp with sodium acetate alone or potassium sorbate with bifidobacteria prolonged the microbiological shelf life by 3 days and increased the microbial generation time from 12.8 h (control) to 30.1 h or 31.4 h, respectively. The microbiological and sensory shelf life of peeled shrimp treated with sodium acetate was more than 17 days. Sodium acetate extended the microbial lag phase and lengthened the generation time (38.7 h compared to 15.8 h for the control). Micrococci and coryneforms were the predominant microorganisms in whole shrimp during storage. Treatment with sodium acetate maintained better sensory characteristics for peeled shrimp than potassium sorbate combined with bifidobacteria.


Author(s):  
Loredana Leopold ◽  
Diehl Horst ◽  
Carmen Socaciu

Organic acids give fruit products their characteristic tartness and vary in combination and in concentrations among different juices. The organic acid profile can be used to identify a juice or verify its purity. Typically, organic acids in fruit juices are identified and quantified by using methods such as HPLC. In this procedure, reversed phase column is used to separate and identificate six organic acids. Because several of the analytes are extremely difficult to resolve, a aqueous mobile phase is needed to enhance interaction between the acids and the C18 stationary phase.


2021 ◽  
Vol 21 (15) ◽  
pp. 11545-11562
Author(s):  
Louise N. Jensen ◽  
Manjula R. Canagaratna ◽  
Kasper Kristensen ◽  
Lauriane L. J. Quéléver ◽  
Bernadette Rosati ◽  
...  

Abstract. This work investigates the individual and combined effects of temperature and volatile organic compound precursor concentrations on the chemical composition of particles formed in the dark ozonolysis of α-pinene. All experiments were conducted in a 5 m3 Teflon chamber at an initial ozone concentration of 100 ppb and initial α-pinene concentrations of 10 and 50 ppb, respectively; at constant temperatures of 20, 0, or −15 ∘C; and at changing temperatures (ramps) from −15 to 20 and from 20 to −15 ∘C. The chemical composition of the particles was probed using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). A four-factor solution of a positive matrix factorization (PMF) analysis of the combined HR-ToF-AMS data is presented. The PMF analysis and the elemental composition analysis of individual experiments show that secondary organic aerosol particles with the highest oxidation level are formed from the lowest initial α-pinene concentration (10 ppb) and at the highest temperature (20 ∘C). A higher initial α-pinene concentration (50 ppb) and/or lower temperature (0 or −15 ∘C) results in a lower oxidation level of the molecules contained in the particles. With respect to the carbon oxidation state, particles formed at 0 ∘C are more comparable to particles formed at −15 ∘C than to those formed at 20 ∘C. A remarkable observation is that changes in temperature during particle formation result in only minor changes in the elemental composition of the particles. Thus, the temperature at which aerosol particle formation is induced seems to be a critical parameter for the particle elemental composition. Comparison of the HR-ToF-AMS-derived estimates of the content of organic acids in the particles based on m/z 44 in the mass spectra show good agreement with results from off-line molecular analysis of particle filter samples collected from the same experiments. Higher temperatures are associated with a decrease in the absolute mass concentrations of organic acids (R-COOH) and organic acid functionalities (-COOH), while the organic acid functionalities account for an increasing fraction of the measured particle mass.


OENO One ◽  
2020 ◽  
Vol 54 (1) ◽  
pp. 75-85 ◽  
Author(s):  
Alessandra Rinaldi ◽  
Virginie Moine ◽  
Luigi Moio

Aim: The Sangiovese grape cultivar is at the basis of the most well-known Italian wines produced in the Tuscany region. However, little is known about the sensory characteristics of Tuscan Sangiovese wines, and the diversity in astringency subqualities has never been investigated. In this study we evaluated the sensory perception of 16 commercial Sangiovese wines belonging to four categories of denomination (Chianti DOCG, CH; Chianti Classico DOCG, CC; Morellino di Scansano DOCG, MS; Toscana IGT, TS), and again after 20 months of bottle aging.Methods and results: A sensory evaluation was made, consisting of the astringency subqualities, taste, odor, and aroma profiles of wines. In addition, chemical analyses were carried out for the base parameters, polyphenols and some volatile compounds. Astringency subqualities varied depending on the percentage of Sangiovese in wines (from 80 % to 100 %). Blended Sangiovese wines were characterized by positive mouthfeel sensations. According to these, the drivers of liking the wines were associated with soft, mouthcoat, and rich subqualities. The Tuscan Sangiovese denominations were differentiated by volatile active compounds, whereas after about two years of bottle aging the astringency subqualities better achieved this task. Moreover, aging also influenced the evolution of wines: CC and CH wines positively evolved, revealing a complex odor profile; MS lost the fruity character; and TS was less involved in sensory modification. Conclusions: For the first time, a detailed evaluation of the astringency subqualities of commercial Sangiovese wines was undertaken. Sangiovese subqualities differed according to the percentage of Sangiovese and denomination. Tuscan denominations were distinguished by peculiar sensory characteristics. In addition, bottle aging significantly influenced the evolution of the sensory perception of Sangiovese wine. In particular, mono-varietal Sangiovese wine needed a long period of aging to soften the astringency characteristics.Significance and impact of the study: Sangiovese wine represents - with its denominations and styles - the best-known and high-quality Italian wine in the world, and its popularity is increasing worldwide. Tuscan Sangiovese wines are often a blend with other red varieties of the region, and these can vary according to the production regulations. This study aimed to improve the knowledge of the sensory characteristics of Sangiovese wines belonging to different denominations and made with different percentages of this grape cultivar. In particular, the astringency subqualities are fundamental to fully appreciating the quality of the red wine during tasting.


Sign in / Sign up

Export Citation Format

Share Document