scholarly journals Numerical Analysis of the Structural Resistance and Stability of Masonry Walls with an AAC Thermal Break Layer

2021 ◽  
Vol 13 (21) ◽  
pp. 11647
Author(s):  
Mohammed Deyazada ◽  
Hervé Degée ◽  
Bram Vandoren

Since energy efficiency has become the main priority in the design of buildings, load-bearing walls in modern masonry constructions nowadays include thermal break elements at the floor–wall junction to mitigate thermal bridges. The structural stability of these bearing walls is consequently affected. In the present paper, a numerical study of the resistance and stability of such composite masonry walls, including AAC thermal break layers, is presented. A finite element mesoscopic model is successfully calibrated with respect to recent experimental results at small and medium scale, in terms of resistance and stiffness under vertical load with or without eccentricity. The model is then used to extend the numerical models to larger-scale masonry walls made of composite masonry, with the aim of investigating the consequences of thermal elements on global resistance and stability. The results confirm that the resistance of composite walls is governed by the masonry layer with the lowest resistance value, except for walls with very large slenderness and loaded eccentrically: composite walls with low slenderness or loaded by a vertical load with limited eccentricities are failing due to the crushing of the AAC layer, while the walls characterized by large slenderness ratios and loaded eccentrically tend to experience buckling failure in the main clay masonry layer.

Author(s):  
Kyriakos Karlos ◽  
Aristomenis Tsantilis ◽  
Thanasis Triantafillou

Taking into consideration the seismic vulnerability of older buildings and the increasing need for reducing their carbon footprint and energy consumption, the application of an innovative system is investigated; the system is based on the use of textile reinforced mortars (TRM) and thermal insulation as a means of combined seismic and energy retrofitting of existing masonry walls. Medium scale tests were carried out on masonry walls subjected to out-of-plane cyclic loading. The following parameters were investigated experimentally: one-sided versus two-sided insulation and/or TRM jacketing, placement of the TRM outside the insulation or in a sandwich form (over and under the insulation), as well as the displacement amplitude of the loading cycles. A simple analytical method is developed and is found in good agreement with test results. Additionally, numerical modeling is carried out and is also found in good agreement with test results. From the results obtained in this study the authors believe that TRM jacketing may be combined effectively with thermal insulation, increasing the overall strength and energy efficiency of the masonry panels in buildings.


2019 ◽  
Vol 11 (1) ◽  
pp. 23-40
Author(s):  
Zejun Zheng ◽  
Jun Yu ◽  
Fangfang Wei ◽  
Jun Wu

Currently, terrorism attack is one of the main concerns in public safety, although the probability of such attack is fairly low. From the perspective of multi-hazard mitigation, it is expected that the structural members that are used to resist earthquakes or winds in buildings should also reduce the vulnerability to blast. Concrete filled double-steel-plate composite walls are one of the novel structural members which are used as shear walls, in which concrete is filled between two steel plates and connected to them through shear studs. In this article, finite-element-based analyses were carried out to investigate the dynamic behaviour of concrete filled double-steel-plate composite walls subjected to blast loading. A three-dimensional numerical model was developed and validated based on previously published experimental results. Then, the numerical models were employed to investigate the effects of axial compression ratio, concrete strength, wall thickness and shear connector spacing on the blast performance of concrete filled double-steel-plate composite walls under different blast intensities. The results show that axial compression has both positive and negative effects on the blast performance of concrete filled double-steel-plate composite walls. The positive effect prevails due to increased effective flexural stiffness when plastic deformation under zero axial compression and the same blast load is marginal, whereas the negative effect is more dominant due to P-delta effect when evident plastic deformation occurs under zero axial compression and the same blast load.


2021 ◽  
Vol 245 ◽  
pp. 112843
Author(s):  
Mohammad Asad ◽  
Tatheer Zahra ◽  
David P Thambiratnam ◽  
Tommy H.T. Chan ◽  
Yan Zhuge

2021 ◽  
Vol 8 (5) ◽  
pp. 70
Author(s):  
Marco Ferroni ◽  
Beatrice Belgio ◽  
Giuseppe M. Peretti ◽  
Alessia Di Giancamillo ◽  
Federica Boschetti

The menisci of the knee are complex fibro-cartilaginous tissues that play important roles in load bearing, shock absorption, joint lubrication, and stabilization. The objective of this study was to evaluate the interaction between the different meniscal tissue components (i.e., the solid matrix constituents and the fluid phase) and the mechanical response according to the developmental stage of the tissue. Menisci derived from partially and fully developed pigs were analyzed. We carried out biochemical analyses to quantify glycosaminoglycan (GAG) and DNA content according to the developmental stage. These values were related to tissue mechanical properties that were measured in vitro by performing compression and tension tests on meniscal specimens. Both compression and tension protocols consisted of multi-ramp stress–relaxation tests comprised of increasing strains followed by stress–relaxation to equilibrium. To better understand the mechanical response to different directions of mechanical stimulus and to relate it to the tissue structural composition and development, we performed numerical simulations that implemented different constitutive models (poro-elasticity, viscoelasticity, transversal isotropy, or combinations of the above) using the commercial software COMSOL Multiphysics. The numerical models also allowed us to determine several mechanical parameters that cannot be directly measured by experimental tests. The results of our investigation showed that the meniscus is a non-linear, anisotropic, non-homogeneous material: mechanical parameters increase with strain, depend on the direction of load, and vary among regions (anterior, central, and posterior). Preliminary numerical results showed the predominant role of the different tissue components depending on the mechanical stimulus. The outcomes of biochemical analyses related to mechanical properties confirmed the findings of the numerical models, suggesting a specific response of meniscal cells to the regional mechanical stimuli in the knee joint. During maturation, the increase in compressive moduli could be explained by cell differentiation from fibroblasts to metabolically active chondrocytes, as indicated by the found increase in GAG/DNA ratio. The changes of tensile mechanical response during development could be related to collagen II accumulation during growth. This study provides new information on the changes of tissue structural components during maturation and the relationship between tissue composition and mechanical response.


2014 ◽  
Vol 626 ◽  
pp. 109-114
Author(s):  
Wen Su Chen ◽  
Hong Hao ◽  
Hao Du

Hurricane, typhoon and cyclone take place more and more often around the world with changing climate. Such nature disasters cause tremendous economic loss and casualty. Various kinds of windborne debris such as compact-like, plate-like and rod-like objects driven by hurricane usually imposes localized impact loading on the structure envelopes such as cladding, wall or roof, etc. The dominant opening in the envelope might cause serious damage to the structures, even collapse. To withstand the impact of such extreme event, the requirements on panel capacity to resist windborne debris impact has been presented in the Australian Wind Loading Code (2011) [1]. Corrugated metal panels are widely used as building envelop. In a previous study, laboratory tests have been carried out to investigate the performance of corrugated metal panels subjected to a 4kg wooden projectile by considering various impact locations, impact velocities and boundary conditions. In this study, numerical models were developed to simulate the responses of the corrugated metal panels subjected to wooden debris impacts by using commercial software LS-DYNA. The predicted data from the numerical simulations were compared with the experimental results. The validated numerical model can be used to conduct intensive numerical simulation to study the failure probabilities of corrugated structural panels subjected to windborne debris impacts.


Author(s):  
Michael CH Yam ◽  
Ke Ke ◽  
Ping Zhang ◽  
Qingyang Zhao

A novel beam-to-column connection equipped with shape memory alloy (SMA) plates has been proposed to realize resilient performance under low-to-medium seismic actions. In this conference paper, the detailed 3D numerical technique calibrated by the previous paper is adopted to examine the hysteretic behavior of the novel connection. A parametric study covering a reasonable range of parameters including the thickness of the SMA plate, friction coefficient between SMA plate and beam flange and pre-load of the bolt was carried out and the influence of the parameters was characterized. In addition, the effect of the SMA Belleville washer on the connection performance was also studied. The results of the numerical study showed that the initial connection stiffness and the energy-dissipation capacity of the novel connection can be enhanced with the increase of the thickness of the SMA plate. In addition, the initial connection stiffness and energy-dissipation behavior of the novel connection can be improved by increasing the friction coefficient or pre-load of bolts, whereas the increased friction level could compromise the self-centering behavior of the connection. The hysteretic curves of the numerical models of the connection also implied that the SMA washers may contribute to optimizing the connection behavior by increasing the connection stiffness and energy-dissipation capacity without sacrificing the self-centering behavior.


2021 ◽  
Vol 930 ◽  
Author(s):  
I.A. Milne ◽  
O. Kimmoun ◽  
J.M.R. Graham ◽  
B. Molin

The wave-induced resonant flow in a narrow gap between a stationary hull and a vertical wall is studied experimentally and numerically. Vortex shedding from the sharp bilge edge of the hull gives rise to a quadratically damped free surface response in the gap, where the damping coefficient is approximately independent of wave steepness and frequency. Particle image velocimetry and direct numerical simulations were used to characterise the shedding dynamics and explore the influence of discretisation in the measurements and computations. Secondary separation was identified as a particular feature which occurred at the hull bilge in these gap flows. This can result in the generation of a system with multiple vortical regions and asymmetries between the inflow and outflow. The shedding dynamics was found to exhibit a high degree of invariance to the amplitude in the gap and the spanwise position of the barge. The new measurements and the evaluation of numerical models of varying fidelity can assist in informing offshore operations such as the side by side offloading from floating liquefied natural gas facilities.


1996 ◽  
Vol 118 (1) ◽  
pp. 37-44 ◽  
Author(s):  
G. A. Eghneim ◽  
S. J. Kleis

A combined experimental and numerical study was conducted to support the development of a new gradient maintenance technique for salt-gradient solar ponds. Two numerical models were developed and verified by laboratory experiments. The first is an axisymmetric (near-field) model which determines mixing and entrainment in the near-field of the injecting diffuser by solving the conservation equations of mass, momentum, energy, and salt. The model assumes variable properties and uses a simple turbulence model based on the mixing length hypothesis to account for the turbulence effects. A series of experimental measurements were conducted in the laboratory for the initial adjustment of the turbulence model and verification of the code. The second model is a one-dimensional far-field model which determines the change of the salt distribution in the pond gradient zone as a result of injection by coupling the near-field injection conditions to the pond geometry. This is implemented by distributing the volume fluxes obtained at the domain boundary of the near-field model, to the gradient layers of the same densities. The numerical predictions obtained by the two-region model was found to be in reasonable agreement with the experimental data.


2017 ◽  
Vol 20 (11) ◽  
pp. 1632-1643 ◽  
Author(s):  
Masoud Amouzadeh Tabrizi ◽  
Masoud Soltani

This article focuses on the experimental and analytical investigations of masonry walls surrounded by tie-elements under in-plane loads. The experimental results of an unconfined and a confined masonry wall, tested under reversed cyclic lateral loads, are presented. For numerical study, a micro-modeling strategy, using smeared-crack-based approach, is adopted. In order to validate the numerical approach, experimental test results and data obtained from the literature are used, and through a systematic parametric study, the influence of adjoining walls and number of tie-columns on the seismic behavior of confined masonry panels is numerically assessed and a simple but rational method for predicting the nonlinear behavior of these structures is proposed.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3126 ◽  
Author(s):  
Yu Jia ◽  
Shasha Li ◽  
Yu Shi

As the automotive paradigm shifts towards electric, limited range remains a key challenge. Increasing the battery size adds weight, which yields diminishing returns in range per kilowatt-hour. Therefore, energy recovery systems, such as regenerative braking and photovoltaic cells, are desirable to recharge the onboard batteries in between hub charge cycles. While some reports of regenerative suspension do exist, they all harvest energy in a parasitic manner, and the predicted power output is extremely low, since the majority of the energy is still dissipated to the environment by the suspension. This paper proposes a fundamental suspension redesign using a magnetically-levitated spring mechanism and aims to increase the recoverable energy significantly by directly coupling an electromagnetic transducer as the main damper. Furthermore, the highly nonlinear magnetic restoring force can also potentially enhance rider comfort. Analytical and numerical models have been constructed. Road roughness data from an Australian road were used to numerically simulate a representative environment response. Simulation suggests that 10’s of kW to >100 kW can theoretically be generated by a medium-sized car travelling on a typical paved road (about 2–3 orders of magnitude higher than literature reports on parasitic regenerative suspension schemes), while still maintaining well below the discomfort threshold for passengers (<0.315 m/s 2 on average).


Sign in / Sign up

Export Citation Format

Share Document