scholarly journals A Novel Hexagonal-Shaped Multilevel Inverter with Reduced Switches for Grid-Integrated Photovoltaic System

2021 ◽  
Vol 13 (21) ◽  
pp. 12018
Author(s):  
Md. Tariqul Islam ◽  
Hady H. Fayek ◽  
Eugen Rusu ◽  
Md. Fayzur Rahman

To date, the grid-connected solar photovoltaic (PV) system has drawn consideration from researchers and academicians due to the speedy improvement and the declining price of solar panels. The proficiency and dependability of a grid integrated PV system rest mainly on the power conversion unit and the proper controlling mechanism. This paper introduces a novel asymmetric hexagonal-shaped fifteen-level inverter designed to feed a grid-integrated solar PV system. First, it aims to reduce the number of components and thereby decrease the installation space and cost of the multilevel inverter. Moreover, it has a low total blocking voltage (TBV) and total device rating (TDR) and uses few switching devices for generating per level of output voltage. The proposed topology utilizes only eight switching devices for generating fifteen levels at the output, which is lower than conventional multilevel inverter topologies. Here, a low-frequency modulation scheme using the half-height (HH) method generates switching pulses to minimize the complexity. The proposed multilevel inverter topology is also validated through the simulations in the MATLAB SIMULINK environment. The proposed inverter need for filters is illustrated according to different grid codes for integrating PV systems to the grid.

Author(s):  
Saminathan S & Dr. Ranjithkumar K

In this work, a new modular multilevel inverter topology is introduced for a single phase grid connected Photovoltaic system. This multilevel inverter use less number of switches to generate seven levels compared to other conventional multilevel inverters. This requires only one isolated dc source to operate. So it is suitable for renewable energy application. This inverter is designed by submodule configuration; each sub module contains two switches and one DC link capacitor. The sub modules will be added to the inverter depending on number of levels. The voltage balancing of DC link capacitor is carried out by Y matrix PWM technique. Because of Y matrix PWM technique, the inverter gets a self capacitor voltage balancing ability. So there is no need of external devices required for balancing the voltage of capacitor. A PLL for grid integration and LCL filter are designed and integrated with this inverter. The simulation of proposed system is carried out by MATLAB/SIMULINK and performance of THD is monitored as per standards


2018 ◽  
Vol 8 (1) ◽  
pp. 2452-2458 ◽  
Author(s):  
A. Nouaiti ◽  
A. Saad ◽  
A. Mesbahi ◽  
M. Khafallah

This paper presents the design and the implementation of a low-cost single phase five-level inverter for photovoltaic applications. The proposed multilevel inverter is composed of a simple boost converter, a switched-capacitor converter, and an H-bridge converter. An efficient control method which associates a closed-loop regulation method with a simple maximum power point tracking (MPPT) method is applied in order to allow the proposed multilevel inverter to transfer power energy from solar panels to autonomous load with no storage batteries. An experimental prototype of this inverter is fabricated at the laboratory and tested with a digital control system. Obtained results confirm the simplicity and the performance of the proposed photovoltaic system.


2021 ◽  
Vol 13 (2) ◽  
pp. 505
Author(s):  
Sumaya Jahan ◽  
Shuvra Prokash Biswas ◽  
Md. Kamal Hosain ◽  
Md. Rabiul Islam ◽  
Safa Haq ◽  
...  

The use of different control techniques has become very popular for controlling the performance of grid-connected photovoltaic (PV) systems. Although the proportional-integral (PI) control technique is very popular, there are some difficulties such as less stability, slow dynamic response, low reference tracking capability, and lower output power quality in solar PV applications. In this paper, a robust, fast, and dynamic proportional-integral resonance controller with a harmonic and lead compensator (PIR + HC + LC) is proposed to control the current of a 15-level neutral-point-clamped (NPC) multilevel inverter. The proposed controlled is basically a proportional-integral resonance (PIR) controller with the feedback of a harmonic compensator and a lead compensator. The performance of the proposed controller is analyzed in a MATLAB/Simulink environment. The simulation result represents admirable performance in terms of stability, sudden load change response, fault handling capability, reference tracking capability, and total harmonic distortion (THD) than those of the existing controllers. The responses of the inverter and grid outlets under different conditions are also analyzed. The harmonic compensator decreases the lower order harmonics of grid voltage and current, and the lead compensator provides the phase lead. It is expected that the proposed controller is a dynamic aspirant in the grid-connected PV system.


Author(s):  
Rahul Bisht ◽  
Afzal Sikander

Purpose This paper aims to achieve accurate maximum power from solar photovoltaic (PV), its five parameters need to be estimated. This study proposes a novel optimization technique for parameter estimation of solar PV. Design/methodology/approach To extract optimal parameters of solar PV new optimization technique based on the Jellyfish search optimizer (JSO). The objective function is defined based on two unknown variables and the proposed technique is used to estimate the two unknown variables and the rest three unknown variables are estimated analytically. Findings In this paper, JSO is used to estimate the parameters of a single diode PV model. In this study, eight different PV panels are considered. In addition, various performance indices, such as PV characteristics, such as power-voltage and current-voltage curves, relative error (RE), root mean square error (RMSE), mean absolute error (MAE) and normalized mean absolute error (NMAE) are determined using the proposed algorithm and existing algorithms. The results for different solar panels have been obtained under varying environmental conditions such as changing temperature and constant irradiance or changing irradiance and constant temperature. Originality/value The proposed technique is new and provides better results with minimum RE, RMSE, NMAE, MAE and converges fast, as depicted by the fitness graph presented in this paper.


Electronics ◽  
2018 ◽  
Vol 7 (7) ◽  
pp. 119 ◽  
Author(s):  
Muhammad Khan ◽  
Kamran Zeb ◽  
Waqar Uddin ◽  
P. Sathishkumar ◽  
Muhammad Ali ◽  
...  

Environment protection and energy saving are the most attractive trends in zero-carbon buildings. The most promising and environmentally friendly technique is building integrated photovoltaics (BIPV), which can also replace conventional buildings based on non-renewable energy. Despite the recent advances in technology, the cost of BIPV systems is still very high. Hence, reducing the cost is a major challenge. This paper examines and validates the effectiveness of low-cost aluminum (Al) foil as a reflector. The design and the performance of planer-reflector for BIPV systems are analyzed in detail. A Bi-reflector solar PV system (BRPVS) with thin film Al-foil reflector and an LLC converter for a BIPV system is proposed and experimented with a 400-W prototype. A cadmium–sulfide (CdS) photo-resistor sensor and an Arduino-based algorithm was developed to control the working of the reflectors. Furthermore, the effect of Al-foil reflectors on the temperature of PV module has been examined. The developed LLC converter confirmed stable output voltage despite large variation in input voltage proving its effectiveness for the proposed BRPVS. The experimental results of the proposed BRPVS with an Al-reflector of the same size as that of the solar PV module offered an enhancement of 28.47% in the output power.


2020 ◽  
Vol 186 ◽  
pp. 01004
Author(s):  
Pathomthat Chiradeja ◽  
Atthapol Ngaopitakkul

Renewable energy especially solar energy has become a significant part in electrical power generation with its advantage in the environmentally friendly and current trend of decrease in installation cost. The photovoltaic (PV) system on a rooftop is one of the power generating system based on renewable energy that can fit building to utilize space efficiently. This paper is analyzing the feasibility of installing a solar PV rooftop on the building using a case study building located in Bangkok, Thailand. The performance will be evaluated in term of both energy and economic perspective. The comparison with Thailand building energy code also been done to show that overall energy consumption with PV system complies with the law. The result has shown that with rooftop photovoltaic system installation, annual energy consumption in the building can be reduced significantly and it can achieve feasibility in term of economic perspective.


Author(s):  
Hussain M. Bassi

<p>This paper presented and studied a new switching scheme for floating source multilevel inverters to produce more levels with the same number of switching devices. In the proposed scheme, the function of the dc sources, except the inner one, is to build up square wave or blocks that is close in the shape to the desired sinusoidal wave. The job of the inner switching devices is to increase the number of the levels to produce smother sinusoidal wave in the inverter output. This job can be done by adding or subtracting the value of the inner dc source to/from the blocks. The topology used in this paper is based on the conventional floating source multi-level inverter using two legs. This topology and modulation technique show substantial reduction in the total harmonics distortion when the modulation technique is the hybrid method. The performance of the proposed switching scheme in generating more levels has been evaluated by PSCAD/EMTDC simulation.</p>


Author(s):  
M. Venkatesan ◽  
R. Rajeswari ◽  
M. Kaliyamoorthy ◽  
M. Srithar

The transient and steady state analysis of Modified Three Phase Multilevel Inverter (MMLI) for Photovoltaic (PV) system fed from single DC input is presented in this paper. The transient and Steady state conditions of modified three phase multilevel inverter are analyzed using Proportional Integral (PI) and Fuzzy Logic Controller (FLC) with change in irradiance level of PV panels. The three phase multilevel inverter  is designed with reduce number of power semiconductor switches, components, single DC input and effectively controlled by using Space Vector Pulse width Modulation technique (SVPWM).  The obtained results are validated using MATLAB/ Simulink.Finaly, semiconductor switches and componets utilization of MMLI is compared with other similar topologies.


Author(s):  
K. Agyenim-Boateng ◽  
R. F. Boehm

The promise of large-scale use of renewables such as wind and solar for supplying electrical power is tempered by the sources’ transient behavior and the impact this would have on the operation of the grid. One way of addressing this is through the use of supplemental energy storage. While the technology for the latter has not been proven on a large scale or to be economical at the present time, some assessments of what magnitude is required can be made. In performing this work we have used NREL’s Solar Advisor Model (SAM 2010) with TMY3 solar data to estimate the photovoltaic system power generation. Climatic conditions close to load centers were chosen for the simulations. Then the PV output for varying sizes of arrays were examined and the impact of varying amounts of storage investigated. The storage was characterized by maximum limiting energy and power capacities based on annual hourly peak load, as well as its charging and discharging efficiencies. The simulations were performed using hourly time steps with energy withdrawn from, or input to, storage only after considering base generation and the PV system output in serving the grid load. In this work, we examined the load matching capability of solar PV generation (orientated for maximum summer output) for a sample Southwestern US utility grid load of 2008. Specifically we evaluated the daily and seasonal peak load shifting with employing varying storage capacities. The annual average energy penetration based on the usable solar PV output is also examined under these conditions and at different levels of system flexibility.


Sign in / Sign up

Export Citation Format

Share Document