scholarly journals The Relationship between Climate Change, Variability, and Food Security: Understanding the Impacts and Building Resilient Food Systems in West Pokot County, Kenya

2022 ◽  
Vol 14 (2) ◽  
pp. 765
Author(s):  
Everlyne B. Obwocha ◽  
Joshua J. Ramisch ◽  
Lalisa Duguma ◽  
Levi Orero

This study integrated local and scientific knowledge to assess the impacts of climate change and variability on food security in West Pokot County, Kenya from 1980–2012. It characterized rainfall and temperature from 1980–2011 and the phenology of agricultural vegetation, assessed land use and land cover (LULC) changes, and surveyed local knowledge and perceptions of the relationships between climate change and variability, land use decisions, and food (in)security. The 124 respondents were aware of long-term changes in their environment, with 68% strongly believing that climate has become more variable. The majority of the respondents (88%) reported declining rainfall and rising temperatures, with respondents in the lowland areas reporting shortened growing seasons that affected food production. Meteorological data for 1980–2011 confirmed high inter-annual rainfall variability around the mean value of 973.4 mm/yr but with no notable trend. Temperature data showed an increasing trend between 1980 and 2012 with lowlands and highlands showing changes of +1.25 °C and +1.29 °C, respectively. Land use and land cover changes between 1984 and 2010 showed cropland area increased by +4176% (+33,138 ha), while grassland and forest areas declined by –49% (–96,988 ha) and –38% (–65,010 ha), respectively. These area changes illustrate human-mediated responses to the rainfall variability, such as increased stocking after good rainfall years and crop area expansion. The mean Normalized Difference Vegetation Index (NDVI) values ranged from 0.36–0.54 within a year, peaking in May and September. For weather-related planning, respondents relied on radio (64%) and traditional forecasters (26%) as predominant information sources. Supporting continuous climate change monitoring, intensified early warning systems, and disseminating relevant information to farmers could help farmers adopt appropriate adaptation strategies.

2016 ◽  
Vol 20 (7) ◽  
pp. 2841-2859 ◽  
Author(s):  
Claire Casse ◽  
Marielle Gosset ◽  
Théo Vischel ◽  
Guillaume Quantin ◽  
Bachir Alkali Tanimoun

Abstract. Since 1950, the Niger River basin has gone through three main climatic periods: a wet period (1950–1960), an extended drought (1970–1980) and since 1990 a recent partial recovery of annual rainfall. Hydrological changes co-occur with these rainfall fluctuations. In most of the basin, the rainfall deficit caused an enhanced discharge deficit, but in the Sahelian region the runoff increased despite the rainfall deficit. Since 2000 the Sahelian part of the Niger has been hit by an increase of flood hazards during the so-called red flood period. In Niamey city, the highest river levels and the longest flooded period ever recorded occurred in 2003, 2010, 2012 and 2013, with heavy casualties and property damage. The reasons for these changes, and the relative role of climate versus land use–land cover (LULC) changes are still debated and are investigated in this paper. The evolution of the Niger red flood in Niamey from 1950 to 2012 is analysed based on long-term records of rainfall (three data sets based on in situ and/or satellite data) and discharge, and a hydrological model. The model is first run with the present LULC conditions in order to analyse solely the effect of rainfall variability. The impact of LULC and drainage area modification is investigated in a second step. The simulations based on the current surface conditions are able to reproduce the observed trend in the red flood occurrence and intensity since the 1980s. This has been verified with three independent rainfall data sets and implies that rainfall variability is the main driver for the red flood intensification observed over the last 30 years. The simulation results since 1953 have revealed that LULC and drainage area changes need to be invoked to explain the changes over a 60-year period.


Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 67
Author(s):  
Helen Teshome ◽  
Kindie Tesfaye ◽  
Nigussie Dechassa ◽  
Tamado Tana ◽  
Matthew Huber

Smallholder farmers in East and West Hararghe zones, Ethiopia frequently face problems of climate extremes. Knowledge of past and projected climate change and variability at local and regional scales can help develop adaptation measures. A study was therefore conducted to investigate the spatio-temporal dynamics of rainfall and temperature in the past (1988–2017) and projected periods of 2030 and 2050 under two Representative Concentration Pathways (RCP4.5 and RCP8.5) at selected stations in East and West Hararghe zones, Ethiopia. To detect the trends and magnitude of change Mann–Kendall test and Sen’s slope estimator were employed, respectively. The result of the study indicated that for the last three decades annual and seasonal and monthly rainfall showed high variability but the changes are not statistically significant. On the other hand, the minimum temperature of the ‘Belg’ season showed a significant (p < 0.05) increment. The mean annual minimum temperature is projected to increase by 0.34 °C and 2.52 °C for 2030, and 0.41 °C and 4.15 °C for 2050 under RCP4.5 and RCP8.5, respectively. Additionally, the mean maximum temperature is projected to change by −0.02 °C and 1.14 °C for 2030, and 0.54 °C and 1.87 °C for 2050 under RCP4.5 and RCP 8.5, respectively. Annual rainfall amount is also projected to increase by 2.5% and 29% for 2030, and 12% and 32% for 2050 under RCP4.5 and RCP 8.5, respectively. Hence, it is concluded that there was an increasing trend in the Belg season minimum temperature. A significant increasing trend in rainfall and temperature are projected compared to the baseline period for most of the districts studied. This implies a need to design climate-smart crop and livestock production strategies, as well as an early warning system to counter the drastic effects of climate change and variability on agricultural production and farmers’ livelihood in the region.


Climate ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 83
Author(s):  
Geofrey Gabiri ◽  
Bernd Diekkrüger ◽  
Kristian Näschen ◽  
Constanze Leemhuis ◽  
Roderick van der Linden ◽  
...  

The impact of climate and land use/land cover (LULC) change continues to threaten water resources availability for the agriculturally used inland valley wetlands and their catchments in East Africa. This study assessed climate and LULC change impacts on the hydrological processes of a tropical headwater inland valley catchment in Uganda. The hydrological model Soil and Water Assessment Tool (SWAT) was applied to analyze climate and LULC change impacts on the hydrological processes. An ensemble of six regional climate models (RCMs) from the Coordinated Regional Downscaling Experiment for two Representative Concentration Pathways (RCPs), RCP4.5 and RCP8.5, were used for climate change assessment for historical (1976–2005) and future climate (2021–2050). Four LULC scenarios defined as exploitation, total conservation, slope conservation, and protection of headwater catchment were considered. The results indicate an increase in precipitation by 7.4% and 21.8% of the annual averages in the future under RCP4.5 and RCP8.5, respectively. Future wet conditions are more pronounced in the short rainy season than in the long rainy season. Flooding intensity is likely to increase during the rainy season with low flows more pronounced in the dry season. Increases in future annual averages of water yield (29.0% and 42.7% under RCP4.5 and RCP8.5, respectively) and surface runoff (37.6% and 51.8% under RCP4.5 and RCP8.5, respectively) relative to the historical simulations are projected. LULC and climate change individually will cause changes in the inland valley hydrological processes, but more pronounced changes are expected if the drivers are combined, although LULC changes will have a dominant influence. Adoption of total conservation, slope conservation and protection of headwater catchment LULC scenarios will significantly reduce climate change impacts on water resources in the inland valley. Thus, if sustainable climate-smart management practices are adopted, the availability of water resources for human consumption and agricultural production will increase.


Author(s):  
E. Ramadan ◽  
T. Al-Awadhi ◽  
Y. Charabi

The study of land cover/land use dynamics under climate change conditions is of great significance for improving sustainable ecological management. Understanding the relationships between land cover and land use changes and climate change is thus very important. Understanding the interactive and cumulative effects of climate and land-use changes are a priority for urban planners and policy makers. The present investigation is based on Landsat satellite imagery to explore changes in vegetation spatial distribution between the years from 2000 to2018 The methodology is focused on vegetation indexes tracking and algebraic overlay calculation to analyzed vegetation and their spatial differentiation, land cover change pattern, and the relationships between vegetation dynamics and land cover change in Dhofar Governorate. The study results have revealed that the vegetation vigor is lower in all years compared to 2000. The scene of 2010 shows the minimum vegetation vigor, overall. Besides, the investigation shows a statistical relationship between rainfall and the status of the health of vegetation. Monsoon rainfall has an impact of the growth of vegetation. Between 2012 and 2013, the vegetation activity shows a decreasing trend. The analysis diagnoses an area affected by the worst degree of aridity situated in the southeastern of Dhofar Mountains. Climate change is the main driving factor resulted from both human activities and rainfall fluctuation.


2021 ◽  
Vol 893 (1) ◽  
pp. 012006
Author(s):  
F Aditya ◽  
E Gusmayanti ◽  
J Sudrajat

Abstract Climate change has been a prominent issue in the last decade. Climate change on a global scale does not necessarily have the same effect in different regions. Rainfall is a crucial weather element related to climate change. Rainfall trends analysis is an appropriate step in assessing the impact of climate change on water availability and food security. This study examines rainfall variations and changes at West Kalimantan, focusing on Mempawah and Kubu Raya from 2000-2019. The Mann-Kendall (MK) and Sen's Slope estimator test, which can determine rainfall variability and long-term monotonic trends, were utilized to analyze 12 rainfall stations. The findings revealed that the annual rainfall pattern prevailed in all locations. Mempawah region tends to experience a downward trend, while Kubu Raya had an upward trend. However, a significant trend (at 95% confidence level) was identified in Sungai Kunyit with a slope value of -33.20 mm/year. This trend indicates that Sungai Kunyit will become drier in the future. The results of monthly rainfall analysis showed that significant upward and downward trends were detected in eight locations. Rainfall trends indicate that climate change has occurred in this region.


2021 ◽  
pp. 232102222110514
Author(s):  
Kolawole Ogundari ◽  
Adebola Abimbola Ademuwagun ◽  
Ogechukwu Appah

The climatic change crisis has led to a renewed interest in understanding the dynamic of climatic variability over time. This is because rainfall variability in response to climate change poses a severe threat to global food security and agricultural production in general. As a result of this, the study investigates the convergence of rainfall variability in Nigeria. We use historical climate data on annual rainfall collected from meteorological stations across 12 states and covering 1992–2013. This gives rise to a balanced panel data of 12 states and 20 periods, which yields 240 observations. The study used a sigma convergence hypothesis test estimated using ordinary least square, fixed-effect and feasible generalized least square models. The coefficient of variation is taken as a measure of rainfall variability in the study. The results showed a negative (declining) linear correlation between rainfall’s coefficient of variation and data year. This means that rainfall variability decreased over time. This indicates evidence of convergence of rainfall, which means states with lower average annual rainfall are catching up on states with higher average annual rainfall over time. And, from the agricultural production standpoint, this result shows that the potential threat of rainfall variability to food security is not severe. In addition, it indicates a decrease in risk and uncertainty in food crop production associated with rainfall variability. JEL Classifications: O13, O55, Q10, Q54


Sign in / Sign up

Export Citation Format

Share Document