scholarly journals Utilization of Second Order Slip, Activation Energy and Viscous Dissipation Consequences in Thermally Developed Flow of Third Grade Nanofluid with Gyrotactic Microorganisms

Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 309 ◽  
Author(s):  
Zahra Abdelmalek ◽  
Sami Ullah Khan ◽  
Hassan Waqas ◽  
Hossam A. Nabwey ◽  
Iskander Tlili

In recent decades, an interest has been developed towards the thermal consequences of nanofluid because of utilization of nano-materials to improve the thermal conductivity of traditional liquid and subsequently enhance the heat transportation phenomenon. Following this primarily concept, this current work investigates the thermal developed flow of third-grade nanofluid configured by a stretched surface with additional features of activation energy, viscous dissipation and second-order slip. Buongiorno’s nanofluid model is used to explore the thermophoresis and Brownian motion features based on symmetry fundamentals. It is further assumed that the nanoparticles contain gyrotactic microorganisms, which are associated with the most fascination bioconvection phenomenon. The flow problem owing to the partial differential equations is renovated into dimensional form, which is numerically simulated with the help of bvp4c, by using MATLAB software. The aspects of various physical parameters associated to the current analysis are graphically examined against nanoparticles’ velocity, temperature, concentration and gyrotactic microorganisms’ density distributions. Further, the objective of local Nusselt number, local Sherwood number and motile density number are achieved numerically with variation of various parameters. The results presented here may find valuable engineering applications, like cooling liquid metals, solar systems, power production, solar energy, thermal extrusion systems cooling of machine equipment, transformer oil and microelectronics. Further, flow of nanoparticles containing gyrotactic microorganisms has interesting applications in microbial fuel cells, microfluidic devices, bio-technology and enzyme biosensors.

Author(s):  
T. Hayat ◽  
Sohail A. Khan ◽  
M. Ijaz Khan ◽  
A. Alsaedi

Abstract Here impact of activation energy in binary chemically reactive flow of third grade fluid is addressed. Flow is discussed by a stretchable rotating disk. Novel characteristics regarding thermophoresis and Brownian movement have been analyzed. Nonlinear thermal radiation is considered. Convergent series solutions to nonlinear problems are computed. Impacts of various physical parameters like Brownian motion parameter, Prandtl number, mixed convection parameter, thermophoresis parameter, radiation parameter, activation energy, chemical reaction and Schmidt number on the velocity, concentration and thermal fields are discussed and analyzed. Velocity, temperature and concentration gradients are computed and discussed through various flow variables. Their obtained results present that velocity, temperature, concentration fields are strongly depends on the flow parameters. Main conclusions are presented.


2021 ◽  
Author(s):  
Abdullah Dawar ◽  
Saeed Islam ◽  
Zahir Shah ◽  
Poom Kumam

Abstract In most scenarios of concern, the bulk of fluids treated by researchers and engineers, such as air, water, and oils, can be considered as Newtonian. The inference of Newtonian action however is not true in many situations and the much more complicated non-Newtonian reaction should be superimposed. Such situations exist in the chemical manufacturing sector and the plastics processing plants. Here, we present the mixed convective flow of non-Newtonian third grade fluid containing gyrotactic microorganisms through a stretching surface. The flow is considered as unsteady, laminar, and incompressible. Furthermore, the flow is magnetized and electrically conducting with the help of applied magnetic field. Chemical reaction along with Arrhenius activation energy and viscous dissipation influences are taken into attention. The governing PDEs are transformed to ODEs through appropriate similarity transformations. Analytical and numerical solutions of the present analysis are done with the help of incorporated codes in MATHEMATICA 10.0. Convergence of HAM is presented through Figures. Also, the outcomes of the embedded factors on the nanofluid flow are displayed through Figures.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Noor Saeed Khan ◽  
Zahir Shah ◽  
Meshal Shutaywi ◽  
Poom Kumam ◽  
Phatiphat Thounthong

Abstract Nanotechnology research has a huge impact upon biomedicine and at the forefront of this area are micro and nano devices that use active/controlled motion. In this connection, it is focus to investigate steady three dimensional rotating flow with heat and mass transfer incorporating gyrotactic microorganisms. Buongiorno’s nanofluid formulation is followed for thermophoresis and Brownian motion, porous space, Arrhenius activation energy and binary chemical reaction with some other effects. An enhanced analytical method is applied to solve the nondimensional equations. The non-dimensional parameters effects on the fields of velocity, temperature, nanoparticles concentration and gyrotactic microorganisms concentration are shown graphically. Velocity decreases while temperature and nanoparticles concentration increase with magnetic field strength. Gyrotatic microorganisms motion becomes slow with rotation parameter. Due to rotation, the present problem can be applied in microbial fuel cells, food processing, microbiology, biotechnology and environmental sciences, electric power generating and turbine systems, computer disk drives, mass spectromentries and jet motors.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Ime Jimmy Uwanta ◽  
Halima Usman

The present paper investigates the combined effects of Soret and Dufour on free convective heat and mass transfer on the unsteady one-dimensional boundary layer flow over a vertical channel in the presence of viscous dissipation and constant suction. The governing partial differential equations are solved numerically using the implicit Crank-Nicolson method. The velocity, temperature, and concentration distributions are discussed numerically and presented through graphs. Numerical values of the skin-friction coefficient, Nusselt number, and Sherwood number at the plate are discussed numerically for various values of physical parameters and are presented through tables. It has been observed that the velocity and temperature increase with the increase in the viscous dissipation parameter and Dufour number, while an increase in Soret number causes a reduction in temperature and a rise in the velocity and concentration.


Heat Transfer ◽  
2021 ◽  
Author(s):  
Anigere Marikempaiah Jyothi ◽  
Rangaswamy Naveen Kumar ◽  
Ramanahalli Jayadevamurthy Punith Gowda ◽  
Yarranna Veeranna ◽  
Ballajja Chandrappa Prasannakumara

2019 ◽  
Vol 15 (1) ◽  
pp. 227-245 ◽  
Author(s):  
Gireesha B.J. ◽  
M. Archana ◽  
B. Mahanthesh ◽  
Prasannakumara B.C.

PurposeThe purpose of this paper is to explore the effects of binary chemical reaction and activation energy on nano Casson liquid flow past a stretched plate with non-linear radiative heat, and also, the effect of a novel exponential space-dependent heat source (ESHS) aspect along with thermal-dependent heat source (THS) effect in the analysis of heat transfer in nanofluid. Comparative analysis is carried out between the flows with linear radiative heat process and non-linear radiative heat process.Design/methodology/approachA similarity transformation technique is utilised to access the ODEs from the governed PDEs. The manipulation of subsequent non-linear equations is carried out by a well-known numerical approach called Runge–Kutta–Fehlberg scheme. Obtained solutions are briefly discussed with the help of graphical and tabular illustrations.FindingsThe effects of various physical parameters on temperature, nanoparticles volume fraction and velocity fields within the boundary layer are discussed for two different flow situations, namely, flow with linear radiative heat and flow with non-linear radiative heat. It is found that an irregular heat source/sink (ESHS and THS) and non-linear solar radiation play a vital role in the enhancement of the temperature distributions.Originality/valueThe problem is relatively original to study the effects of activation energy and binary chemical reaction along with a novel exponential space-based heat source on laminar boundary flow past a stretched plate in the presence of non-linear Rosseland radiative heat.


2009 ◽  
Vol 13 (1) ◽  
pp. 5-12 ◽  
Author(s):  
Pushkar Sharma ◽  
Gurminder Singh

Aim of the paper is to investigate effects of ohmic heating and viscous dissipation on steady flow of a viscous incompressible electrically conducting fluid in the presence of uniform transverse magnetic field and variable free stream near a stagnation point on a stretching non-conducting isothermal sheet. The governing equations of continuity, momentum, and energy are transformed into ordinary differential equations and solved numerically using Runge-Kutta fourth order with shooting technique. The velocity and temperature distributions are discussed numerically and presented through graphs. Skin-friction coefficient and the Nusselt number at the sheet are derived, discussed numerically, and their numerical values for various values of physical parameters are compared with earlier results and presented through tables.


2021 ◽  
Vol 12 (1) ◽  
pp. 132-148

Analytical study of the free and forced convective flow of Casson fluid in the existence of viscous dissipation, ohmic effect and uniform magnetic field in a porous channel to the physical model. The nonlinear coupled partial differential equations are converted to linear partial differential equations using similarity transformation and the classical perturbation method. The physical parameters such as Prandtl number (Pr), viscous dissipation (Vi), Schmidt number (Sc), Reynolds number (R), thermal buoyancy parameter (λ), Ohmic number (Oh), Casson fluid parameter (β), Darcy number (Da), Hartmann number (M2), the concentration of buoyancy parameter (N), chemical reaction rate (γ) effect on velocity, temperature and concentration have been studied with pictorial representation. For the particular case, the present paper analysis is compared with the previous work and is found good agreement.


2022 ◽  
Vol 52 (1) ◽  
pp. 35-41
Author(s):  
Silpisikha Goswami ◽  
Kamalesh Kumar Pandit ◽  
Dipak Sarma

Our motive is to examine the impact of thermal radiation and suction or injection with viscous dissipation on an MHD boundary layer flow past a vertical porous stretched sheet immersed in a porous medium. The set of the flow equations is converted into a set of non-linear ordinary differential equations by using similarity transformation. We use Runge Kutta method and shooting technique in MATLAB Package to solve the set of equations. The impact of non-dimensional physical parameters on flow profiles is analysed and depicted in graphs. We observe the influence of non-dimensional physical quantities on the Nusselt number, the Sherwood number, and skin friction and presented in tables. A comparison of the obtained numerical results with existing results in a limiting sense is also presented. We enhance radiation to observe the deceleration of fluid velocity and temperature profile for both suction and injection. While enhancing porosity parameter accelerates velocity whereas decelerates temperature profile. As the heat source parameter increases, the temperature of the fluid decreases for both suction and injection, it has been found. With the increasing values of the radiation parameter, the skin friction and heat transfer rate decreases. Increasing magnetic parameter decelerates the skin friction, Nusselt number, and Sherwood number.


Sign in / Sign up

Export Citation Format

Share Document