scholarly journals Objective Bayesian Prediction of Future Record Statistics Based on the Exponentiated Gumbel Distribution: Comparison with Time-Series Prediction

Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1443
Author(s):  
Yongku Kim ◽  
Jung In Seo

The interest in the study of record statistics has been increasing in recent years in the context of predicting stock markets and addressing global warming and climate change problems such as cyclones and floods. However, because record values are mostly rare observed, its probability distribution may be skewed or asymmetric. In this case, the Bayesian approach with a reasonable choice of the prior distribution can be a good alternative. This paper presents an objective Bayesian method for predicting future record values when observed record values have a two-parameter exponentiated Gumbel distribution with the scale and shape parameters. For objective Bayesian analysis, objective priors such as the Jeffreys and reference priors are first derived from the Fisher information matrix for the scale and shape parameters, and an analysis of the resulting posterior distribution is then performed to examine its properness and validity. In addition, under the derived objective prior distributions, a simple algorithm using a pivotal quantity is proposed to predict future record values. To validate the proposed approach, it was applied to a real dataset. For a closer examination and demonstration of the superiority of the proposed predictive method, it was compared to time-series models such as the autoregressive integrated moving average and dynamic linear model in an analysis of real data that can be observed from an infinite time series comprising independent sample values.

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249028
Author(s):  
Ehsan Fayyazishishavan ◽  
Serpil Kılıç Depren

The two-parameter of exponentiated Gumbel distribution is an important lifetime distribution in survival analysis. This paper investigates the estimation of the parameters of this distribution by using lower records values. The maximum likelihood estimator (MLE) procedure of the parameters is considered, and the Fisher information matrix of the unknown parameters is used to construct asymptotic confidence intervals. Bayes estimator of the parameters and the corresponding credible intervals are obtained by using the Gibbs sampling technique. Two real data set is provided to illustrate the proposed methods.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Liyun Su ◽  
Chenlong Li

We apply the polynomial function to approximate the functional coefficients of the state-dependent autoregressive model for chaotic time series prediction. We present a novel local nonlinear model called local polynomial coefficient autoregressive prediction (LPP) model based on the phase space reconstruction. The LPP model can effectively fit nonlinear characteristics of chaotic time series with simple structure and have excellent one-step forecasting performance. We have also proposed a kernel LPP (KLPP) model which applies the kernel technique for the LPP model to obtain better multistep forecasting performance. The proposed models are flexible to analyze complex and multivariate nonlinear structures. Both simulated and real data examples are used for illustration.


Author(s):  
Hesham Reyad ◽  
Soha Ibrahim

In this paper, we introduce a new four parameter continuous model, called the beta compound Rayleigh (BCR) distribution that extends the compound Rayleigh distribution. Basic properties of the proposed distribution such as; mean, variance, coefficient of variation, raw and incomplete moments, skewness, kurtosis, moment and probability generating functions, reliability analysis, Lorenz, Bonferroni and Zenga curves, Rényi of entropy, order statistics and record statistics are investigated. We obtain the maximum likelihood estimates and the observed information matrix for the model parameters. Two real data sets are used to illustrate the usefulness of the new model.


Author(s):  
Muhammad Faheem Mushtaq ◽  
Urooj Akram ◽  
Muhammad Aamir ◽  
Haseeb Ali ◽  
Muhammad Zulqarnain

It is important to predict a time series because many problems that are related to prediction such as health prediction problem, climate change prediction problem and weather prediction problem include a time component. To solve the time series prediction problem various techniques have been developed over many years to enhance the accuracy of forecasting. This paper presents a review of the prediction of physical time series applications using the neural network models. Neural Networks (NN) have appeared as an effective tool for forecasting of time series.  Moreover, to resolve the problems related to time series data, there is a need of network with single layer trainable weights that is Higher Order Neural Network (HONN) which can perform nonlinearity mapping of input-output. So, the developers are focusing on HONN that has been recently considered to develop the input representation spaces broadly. The HONN model has the ability of functional mapping which determined through some time series problems and it shows the more benefits as compared to conventional Artificial Neural Networks (ANN). The goal of this research is to present the reader awareness about HONN for physical time series prediction, to highlight some benefits and challenges using HONN.


2019 ◽  
Vol XVI (2) ◽  
pp. 1-11
Author(s):  
Farrukh Jamal ◽  
Hesham Mohammed Reyad ◽  
Soha Othman Ahmed ◽  
Muhammad Akbar Ali Shah ◽  
Emrah Altun

A new three-parameter continuous model called the exponentiated half-logistic Lomax distribution is introduced in this paper. Basic mathematical properties for the proposed model were investigated which include raw and incomplete moments, skewness, kurtosis, generating functions, Rényi entropy, Lorenz, Bonferroni and Zenga curves, probability weighted moment, stress strength model, order statistics, and record statistics. The model parameters were estimated by using the maximum likelihood criterion and the behaviours of these estimates were examined by conducting a simulation study. The applicability of the new model is illustrated by applying it on a real data set.


2019 ◽  
Vol 15 (2) ◽  
pp. 647-659 ◽  
Author(s):  
Zahra Moeini Najafabadi ◽  
Mehdi Bijari ◽  
Mehdi Khashei

Purpose This study aims to make investment decisions in stock markets using forecasting-Markowitz based decision-making approaches. Design/methodology/approach The authors’ approach offers the use of time series prediction methods including autoregressive, autoregressive moving average and artificial neural network, rather than calculating the expected rate of return based on distribution. Findings The results show that using time series prediction methods has a significant effect on improving investment decisions and the performance of the investments. Originality/value In this study, in contrast to previous studies, the alteration in the Markowitz model started with the investment expected rate of return. For this purpose, instead of considering the distribution of returns and determining the expected returns, time series prediction methods were used to calculate the future return of each asset. Then, the results of different time series methods replaced the expected returns in the Markowitz model. Finally, the overall performance of the method, as well as the performance of each of the prediction methods used, was examined in relation to nine stock market indices.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 141
Author(s):  
Jacob Hale ◽  
Suzanna Long

Energy portfolios are overwhelmingly dependent on fossil fuel resources that perpetuate the consequences associated with climate change. Therefore, it is imperative to transition to more renewable alternatives to limit further harm to the environment. This study presents a univariate time series prediction model that evaluates sustainability outcomes of partial energy transitions. Future electricity generation at the state-level is predicted using exponential smoothing and autoregressive integrated moving average (ARIMA). The best prediction results are then used as an input for a sustainability assessment of a proposed transition by calculating carbon, water, land, and cost footprints. Missouri, USA was selected as a model testbed due to its dependence on coal. Of the time series methods, ARIMA exhibited the best performance and was used to predict annual electricity generation over a 10-year period. The proposed transition consisted of a one-percent annual decrease of coal’s portfolio share to be replaced with an equal share of solar and wind supply. The sustainability outcomes of the transition demonstrate decreases in carbon and water footprints but increases in land and cost footprints. Decision makers can use the results presented here to better inform strategic provisioning of critical resources in the context of proposed energy transitions.


2021 ◽  
Vol 181 ◽  
pp. 973-980
Author(s):  
Leonardo Sestrem de Oliveira ◽  
Sarah Beatriz Gruetzmacher ◽  
João Paulo Teixeira

Risks ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 51
Author(s):  
Anthony Medford

Best practice life expectancy has recently been modeled using extreme value theory. In this paper we present the Gumbel autoregressive model of order one—Gumbel AR(1)—as an option for modeling best practice life expectancy. This class of model represents a neat and coherent framework for modeling time series extremes. The Gumbel distribution accounts for the extreme nature of best practice life expectancy, while the AR structure accounts for the temporal dependence in the time series. Model diagnostics and simulation results indicate that these models present a viable alternative to Gaussian AR(1) models when dealing with time series of extremes and merit further exploration.


Sign in / Sign up

Export Citation Format

Share Document