scholarly journals Vapochromism of Organic Crystals Based on Macrocyclic Compounds and Inclusion Complexes

Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1903
Author(s):  
Toshikazu Ono ◽  
Yoshio Hisaeda

Vapochromic materials, which change color and luminescence when exposed to specific vapors and gases, have attracted considerable attention in recent years owing to their potential applications in a wide range of fields such as chemical sensors and environmental monitors. Although the mechanism of vapochromism is still unclear, several studies have elucidated it from the viewpoint of crystal engineering. In this mini-review, we investigate recent advances in the vapochromism of organic crystals. Among them, macrocyclic molecules and inclusion complexes, which have apparent host–guest interactions with analyte molecules (specific vapors and gases), are described. When the host compound is properly designed, its cavity size and symmetry change in response to guest molecules, influencing the optical properties by changing the molecular inclusion and recognition abilities. This information highlights the importance of structure–property relationships resulting from the molecular recognition at the solid–vapor interface.

Author(s):  
L. C. Sawyer

Structure-property relationships are important in the process optimization and fundamental understanding of many polymeric materials, including membranes. Polymer membranes are currently being used for separation, concentration or purification in a wide range of industrial process applications. The process used to manufacture the membrane, and the polymer type, determines the morphology, which influences the membrane transport properties and potential applications. The morphology includes: pore size, shape, distribution and their overall three dimensional arrangement. Microscopical methods are needed to image the structures formed by the various processes, in order to systematically study changes in variables for specific applications.


Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 32 ◽  
Author(s):  
Siyang Ding ◽  
Bicheng Yao ◽  
Louis Schobben ◽  
Yuning Hong

Fluorescent dyes, especially those emitting in the long wavelength region, are excellent candidates in the area of bioassay and bioimaging. In this work, we report a series of simple organic fluorescent dyes consisting of electron-donating aniline groups and electron-withdrawing barbituric acid groups. These dyes are very easy to construct while emitting strongly in the red region in their solid state. The photophysical properties of these dyes, such as solvatochromism and aggregation-induced emission, are systematically characterized. Afterward, the structure–property relationships of these barbituric acid based fluorogens are discussed. Finally, we demonstrate their potential applications for protein amyloid fibril detection.


2014 ◽  
Vol 70 (a1) ◽  
pp. C636-C636
Author(s):  
Himanshu Aggarwal ◽  
Prashant Bhatt ◽  
Charl Benzuidenhout ◽  
Leonard Barbour

Single-crystal to single-crystal transformations has recently received much attention in the field of crystal engineering. Such transformations not only provide insight into the changes taking place within the crystal at the molecular level, but they also aid our understanding of the structure-property relationships. Discrete crystals have been shown to tolerate considerable dynamic behavior at the molecular level while maintaining their single-crystal character. Examples that are common in the literature include bond formation/cleavage,[1] guest uptake,[2] release or exchange as well as polymorphic phase transformations. However, there are rare examples of the structural transformations on the host framework initiated by removal of guest or change in physical conditions such as temperature or pressure. We have investigated a known doubly-interpenetrated metal organic framework with the formula [Zn2(ndc)2(bpy)] which possesses minimal porosity when activated. We have shown not only that the material converts to its triply-interpenetrated analogue upon desolvation, but that the transformation occurs in a single-crystal to single-crystal manner under ambient conditions.[3] This contribution probes the limits to which a single-crystal material can undergo structural rearrangement while still maintaining the macroscopic integrity of the crystal as a discrete entity.


2015 ◽  
Vol 177 ◽  
pp. 249-262 ◽  
Author(s):  
Z. Y. Tian ◽  
H. Vieker ◽  
P. Mountapmbeme Kouotou ◽  
A. Beyer

In situ emission and absorption FTIR methods were employed to characterize the spatially resolved structure of binary Co–Cu oxides for low-temperature oxidation of CO and propene. Co–Cu oxide catalysts were controllably synthesized by pulsed-spray evaporation chemical vapor deposition. XRD, FTIR, XPS, UV-vis and helium ion microscopy (HIM) were employed to characterize the as-prepared thin films in terms of structure, composition, optical and thermal properties as well as morphology. In situ emission FTIR spectroscopy indicates that Co3O4, CuCo2O4 and CuO are thermally stable at 650, 655 and 450 °C, respectively. The catalytic tests with absorption FTIR display that the involvement of Co–Cu oxides can initiate CO and C3H6 oxidation at lower temperatures. The results indicate that in situ emission and absorption FTIR are useful techniques to explore the thermal properties and catalytic performance of functional materials, allowing many potential applications in tailoring their temporally and spatially resolved structure-property relationships.


2014 ◽  
Vol 91 ◽  
pp. 54-63 ◽  
Author(s):  
Gudrun Reichenauer

Aerogels are porous materials with potential applications in fields ranging from thermal insulation, catalyst support, filters, electrical storage, components in optical devices, mechanical damping all the way to drug release. However, careful reliable characterization is the base for both, understanding of fundamental structure - property relationships as well as a directed development of materials and composites for specific applications. The review therefore addressed severe problem upon aerogel characterization that have been identified in the past and presents reliable non-destructive alternatives and novel methods that can be applied for the characterization of aerogels as well as their gel precursors.


1960 ◽  
Vol 33 (5) ◽  
pp. 1259-1292 ◽  
Author(s):  
J. H. Saunders

Abstract Sufficient data are available from studies of urethan foams and elastomers to draw semiquantitative conclusions regarding the effect of any gross structural change on most polymer properties. These relationships apply to other areas of application as well, e.g., coatings, adhesives and sealants. Future research may be expected to provide more reliable control of the many reactions involved in preparing urethans, thus better control over structure. Similarly a more quantitative and extensive knowledge of polymer properties may be expected. The result of these combined efforts will be a more precise knowledge of structure-property relationships and an improved ability to produce polymers having the properties desired for a wide range of applications.


1998 ◽  
Vol 547 ◽  
Author(s):  
Arnold M. Guloy ◽  
Zhihong Xu

AbstractStudies have shown that complex Zintl phases exhibit a rich diversity of crystal structures. These have also revealed a remarkable success of the Zintl concept in rationalizing stoichiometry, crystal structure and chemical bonding of many main group intermetallics. Still there are unresolved questions about the usefulness of the concept in explaining structure-property relationships in intermetallics near the Zintl border, and as a rational tool in designing new materials. Limitations of the concept are represented by violations often associated with “electron-deficient” phases that contain Group 13 metalloids. Recent investigations on “electron-deficient” Zintl phases containing post transition metals have led to the synthesis of a number of novel inorganic-intermetallic π-systems. Since unique structures and properties are already apparent in normal Zintl phases, it is anticipated that the exploratory synthesis and characterization of conjugated and multiple-bonded inorganic systems will produce not only unusual crystal chemistry but interesting physical properties as well. We report on new complex Zintl phases that include the semiconducting SrCa2In2Ge - which features [In2Ge]6- chains and represents a novel inorganic conjugated π-system analogous to a polyallyl chain with In-In double bonds, and Ca5In9Sn6 - which contains In trimers, [In3]5- analogous and isoelectronic with the aromatic cyclopropenium cation, [C3H3]+. These unusual materials, Zintl π-systems, represent a promising class of electronic materials with a range of potential applications.


2022 ◽  
Vol 9 ◽  
Author(s):  
Jingyi Zhao ◽  
Xiaoyan Zheng

Luminescent molecular aggregates have attracted worldwide attention because of their potential applications in many fields. The luminescent properties of organic aggregates are complicated and highly morphology-dependent, unraveling the intrinsic mechanism behind is urgent. This review summarizes recent works on investigating the structure–property relationships of organic molecular aggregates at different environments, including crystal, cocrystal, amorphous aggregate, and doped systems by multiscale modeling protocol. We aim to explore the influence of intermolecular non-covalent interactions on molecular packing and their photophysical properties and then pave the effective way to design, synthesize, and develop advanced organic luminescent materials.


Author(s):  
Mossaraf Hossain ◽  
Ashis Kumar Nanda

Objective: To synthesis a novel methodology of bioactive quinazoline derivatives under greener process to an excellent yields and increases their solubility via inclusion with β-cyclodextrin (CD). Methods: Derivatives of quinazoline compounds were prepared by the mixture of 3-amino-2-phenylquinazolin-4(3H)-one, derived from 2-phenyl-4H-benzo[1,3]oxazin-4-one by refluxing with hydrazine, substituted aromatic aldehyde and alumina intimately in an agate mortar and pestle under solvent-free condition. Using various techniques for preparing inclusion complexes, kneaded method is the best method for encapsulation in host-guest complex chemistry. All compounds including inclusion complexes were characterised by spectral methods. Results: Synthesized a series of novel quinazoline compounds under a very easier greener process with a commercially available reagent. However, their low bioavailability, due to low absorption and solubility, can limit their potential applications. CD was used to resolve this solubility problem. CD can easily accommodated the guest molecules to encapsulate inside its cavity due to interior the hydrophobic nature with a hydrophilic exterior part to form thermodynamically more stable molecular microcapsules, commonly name as host-guest complexes or inclusion complexes. In this sense, CD was utilized to enhance not only the solubility and bioavailability of these quinazoline compounds but also their antibacterial capacity. The formation of inclusion complex was thus confirmed by ultraviolet-visible spectroscopy (UV-VIS), Fourier Transform Infrared Spectrometry (FT-IR), differential scanning calorimetry (DSC) and solubility study technique. Conclusion: Here we have successfully unfolded an eco-friendly methodology for the synthesis of derivatives of quinazoline and increased their solubility via host-guest inclusion technique. From the spectral analysis, it was concluded that the quinazoline compound is fully encapsulated inside the cavity of the CD.


1989 ◽  
Vol 173 ◽  
Author(s):  
D.S. Donald ◽  
L.-T. Cheng ◽  
G. Desiraju ◽  
G. R. Meredith ◽  
F. C. Zumsteg

ABSTRACTThe design of molecular crystals with specific optical properties, which are thought to arise from constituent molecules’ polarizability properties, is a desirable but currently unachievable goal. One can partially achieve this goal by choosing compounds with specific molecular attributes and empirically determining the manner in which these are translated into crystal properties. Besides the fact that there are no certain rules for prediction of crystal packing arrangements, there is also a problem in specifying molecular properties from what are today incomplete polarizability structure-property relationships. We have, realizing these limitations, identified new molecular crystals by a nonlinear optical (powder-SHG) scouting-screening program from lists of compounds chosen because of desirable molecular properties. Examination of successful materials has revealed interesting, new alignment motifs. Some of these materials, a set of halogen and cyano derivatives of aromatic compounds, are described relating properties and structures of molecules and crystals. In particular, the orientation directing influence of intermolecular halogen-cyano interactions and the use of heterocyclic compounds to improve transparency in the near infrared and in the blue and near ultraviolet spectral regions are demonstrated.


Sign in / Sign up

Export Citation Format

Share Document