scholarly journals Asymmetric Lateralization during Pain Processing

Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2416
Author(s):  
Carolina Roza ◽  
Anabel Martinez-Padilla

Pain is defined as “an unpleasant sensory and emotional experience associated with, or resembling that associated with, actual or potential tissue damage”. This complex perception arises from the coordinated activity of several brain areas processing either sensory–discriminative or affective–motivational components. Functional studies performed in healthy volunteers revealed that affective–emotional components of pain are processed bilaterally but present a clear lateralization towards the right hemisphere, regardless of the site of stimulation. Studies at the cellular level performed in experimental animal models of pain have shown that neuronal activity in the right amygdala is clearly pronociceptive, whilst activation of neurons in the left amygdala might even exert antinociceptive effects. A shift in lateralization becomes evident during the development of chronic pain; thus, in patients with neuropathic pain symptoms, there is increased activity in ipsilateral brain areas related with pain. These observations extend the asymmetrical left–right lateralization within the nervous system and provide a new hypothesis for the pathophysiology of chronic forms of pain. In this article, we will review experimental data from preclinical and human studies on functional lateralization in the brain during pain processing, which will help to explain the affective disorders associated with persistent, chronic pain.

2020 ◽  
Author(s):  
Isabelle Hesling

The modalities of communication are the sum of the expression dimension (linguistics) and the expressivity dimension (prosody), both being equally important in language communication. The expressivity dimension which comes first in the act of speech, is the basis on which phonemes, syllables, words, grammar and morphosyntax, i.e., the expression dimension of speech is superimposed. We will review evidence (1) revealing the importance of prosody in language acquisition and (2) showing that prosody triggers the involvement of specific brain areas dedicated to sentences and word-list processing. To support the first point, we will not only rely on experimental psychology studies conducted in newborns and young children but also on neuroimaging studies that have helped to validate these behavioral experiments. Then, neuroimaging data on adults will allow for concluding that the expressivity dimension of speech modulates both the right hemisphere prosodic areas and the left hemisphere network in charge of the expression dimension


2017 ◽  
Author(s):  
Jake T. Jordan

AbstractThe left and right rodent hippocampi exhibit striking lateralization in some of the very neural substrates considered to be critical for hippocampal cognitive function. Despite this, there is an overwhelming lack of consideration for hemispheric differences in studies of the rodent hippocampus. Asymmetries identified so far suggest that a bilateral model of the hippocampus will be essential for an understanding of this brain region, and perhaps of the brain more widely. Although hypotheses have been proposed to explain how the left and right hippocampi contribute to behavior and cognition, these hypotheses have either been refuted by more recent studies or have been limited in the scope of data they explain. Here, I will first review data on human and rodent hippocampal lateralization. The implications of these data suggest that considering the hippocampus as a bilateral structure with functional lateralization will be critical moving forward in understanding the function and mechanisms of this brain region. In exploring these implications, I will then propose a hypothesis of the hippocampus as a bilateral structure. This discrete-continuous (DC) hypothesis proposes that the left and right hippocampi contribute to spatial memory and navigation in a complementary manner. Specifically, the left hemisphere stores spatial information as discrete, salient locations and that the right hemisphere represents space continuously, contributing to route computation and flexible spatial navigation. Consideration of hippocampal lateralization in designing future studies may provide insight into the function of the hippocampus and resolve debates concerning its function.


2018 ◽  
Author(s):  
Bratislav Mišić ◽  
Richard F. Betzel ◽  
Alessandra Griffa ◽  
Marcel A. de Reus ◽  
Ye He ◽  
...  

Converging evidence from activation, connectivity and stimulation studies suggests that auditory brain networks are lateralized. Here we show that these findings can be at least partly explained by the asymmetric network embedding of the primary auditory cortices. Using diffusion-weighted imaging in three independent datasets, we investigate the propensity for left and right auditory cortex to communicate with other brain areas by quantifying the centrality of the auditory network across a spectrum of communication mechanisms, from shortest path communication to diffusive spreading. Across all datasets, we find that the right auditory cortex is better integrated in the connectome, facilitating more efficient communication with other areas, with much of the asymmetry driven by differences in communication pathways to the opposite hemisphere. Critically, the primacy of the right auditory cortex emerges only when communication is conceptualized as a diffusive process, taking advantage of more than just the topologically shortest paths in the network. Altogether, these results highlight how the network configuration and embedding of a particular region may contribute to its functional lateralization.


1979 ◽  
Vol 48 (2) ◽  
pp. 579-585 ◽  
Author(s):  
Paul L. Wang

A series of stimuli, words and faces, were presented tachistoscopically to 24 dextrals and 12 sinistrals. The stimuli were presented to one eye at a time and the subjects were instructed to respond to specific words or stimuli with a specific hand. The results indicate that (1) cerebral functional asymmetry is related to handedness; in the dextrals, the left hemisphere is more specialized in verbal recognition, while in the sinistrals, the right hemisphere is more specialized in recognizing non-verbal material. (2) An ipsilateral hand-and-eye combination is a valid method of measuring intrahemispheric information processing, provided that the tachistoscopically presented visual stimuli are capable of inciting specialized hemispheric function. The dominant relationship among the crossed and non-crossed visual pathways is discussed.


Author(s):  
Michael R. Clark

Pain has been defined as ‘‘an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage’’ (Lindblom et al., 1986). Table 5–1 contains definitions of terms commonly used to describe pain sensations (Merskey et al., 1986). Pain is the most common reason a patient presents to a physician for evaluation. The U.S. Center for Health Statistics found that 32.8% of the general population suffers from chronic pain symptoms (Magni et al., 1993). Many factors can influence patients’ reports of pain, including medical and psychiatric disorders, social circumstances, disease states, personality traits, memory of past pain experiences, and personal interpretations of the meaning of pain (Clark and Treisman, 2004). There is no simple algorithm for determining whether the cause of pain is psychologic or neurologic (Clark and Chodynicki, 2005). The clinical evaluation of patients complaining of pain should be comprehensive and incorporate the patient’s descriptions of pain (ie, location, intensity, duration, precipitants, ameliorators); observations of pain-related behaviors (eg, limping, guarding, moaning); descriptions of problems performing activities; and neurologic and psychiatric examinations (Clark and Cox, 2002). Post-herpetic neuralgia (PHN) is defined as pain persisting or recurring at the site of shingles at least 3 months after the onset of the acute varicella zoster viral rash. PHN occurs in about 10% of patients with acute herpes zoster. More than 50% of patients older than 65 years of age with shingles develop PHN, and it is more likely to occur in patients with cancer, diabetes mellitus, and immunosuppression. During the acute episode of shingles, characteristics such as more severe pain and rash, presence of sensory impairment, and higher levels of emotional distress are associated with developing PHN (Schmader, 2002). Most cases gradually improve, with only about 25% of patients with PHN experiencing pain 1 year after diagnosis. Approximately 15% of patients referred to pain clinics suffer from PHN. Early treatment of varicella zoster with low-dose amitriptyline (25–100mg QD) can reduce the prevalence of pain at 6 months by 50% (Bowsher, 1997).


2006 ◽  
Vol 188 (1) ◽  
pp. 26-31 ◽  
Author(s):  
Thomas J. Cullen ◽  
Mary A. Walker ◽  
Sharon L. Eastwood ◽  
Margaret M. Esiri ◽  
Paul J. Harrison ◽  
...  

BackgroundStudies suggest that neuronal density in left dorsolateral prefrontal cortex is increased in schizophrenia.AimsTo replicate these findings and extend them to both hemispheres.MethodNeuronal density, size and shape were estimated in the prefrontal cortex (Brodmann area 9) of the left and right hemispheres of brains taken postmortem from 10 people with schizophrenia and 10 without mental illness (6 men, 4 women in both groups).ResultsOverall neuronal density (individually corrected for shrinkage) did not differ between the groups. In the control brains, density was generally greater in the left than the right hemisphere, the reverse was seen in the schizophrenia brains; this loss or reversal of asymmetry was most significant in cortical layer 3. Pyramidal neurons in this cell layer were significantly larger on the left and more spherical in shape than on the right side in control brains, but size and shape did not differ between the two sides in schizophrenia. Non-pyramidal and glial cell densities were unchanged.ConclusionsWe failed to find an increase in neuronal density, but found evidence at a cellular level of loss or reversal of asymmetry, consistent with the hypothesis of a primary change in the relative development of areas of heteromodal association cortex in the two hemispheres.


2020 ◽  
Vol 27 (5) ◽  
pp. 1197-1205 ◽  
Author(s):  
David S. Kiss ◽  
Istvan Toth ◽  
Gergely Jocsak ◽  
Tibor Bartha ◽  
Laszlo V. Frenyo ◽  
...  

AbstractThe hypothalamus is the main regulatory center of many homeostatic processes, such as reproduction, food intake, and sleep-wake behavior. Recent findings show that there is a strongly interdependent side-linked localization of hypothalamic functions between the left and right hemispheres. The goal of the present study was to trace functional asymmetry of the hypothalamus related to the regulation of food intake and reproduction, in male rodents. Subjects were examined through measurements of mitochondrial metabolism ex vivo. Impact of gonadectomy and scheduled feeding was tested on the modulation of hypothalamic metabolic asymmetry. Results show that in male rats, functional lateralization of the hypothalamus can be attributed to the satiety state rather than to reproductive control. Fasting caused left-sided metabolic dominance, while satiety was linked to the right hemisphere; trends and direction in sided dominance gradually followed the changes in satiety state. Our findings revealed satiety state-dependent metabolic differences between the two hypothalamic hemispheres. It is therefore concluded that, at least in male rats, the hypothalamic hemispheres control the satiety state-related functions in an asymmetric manner.


2021 ◽  
Vol 15 ◽  
Author(s):  
Annakarina Mundorf ◽  
Jutta Peterburs ◽  
Sebastian Ocklenburg

Recent large-scale neuroimaging studies suggest that most parts of the human brain show structural differences between the left and the right hemisphere. Such structural hemispheric asymmetries have been reported for both cortical and subcortical structures. Interestingly, many neurodevelopmental and psychiatric disorders have been associated with altered functional hemispheric asymmetries. However, findings concerning the relation between structural hemispheric asymmetries and disorders have largely been inconsistent, both within specific disorders as well as between disorders. In the present review, we compare structural asymmetries from a clinical neuroscience perspective across different disorders. We focus especially on recent large-scale neuroimaging studies, to concentrate on replicable effects. With the notable exception of major depressive disorder, all reviewed disorders were associated with distinct patterns of alterations in structural hemispheric asymmetries. While autism spectrum disorder was associated with altered structural hemispheric asymmetries in a broader range of brain areas, most other disorders were linked to more specific alterations in brain areas related to cognitive functions that have been associated with the symptomology of these disorders. The implications of these findings are highlighted in the context of transdiagnostic approaches to psychopathology.


This study sets out to investigate the mechanisms by which psychoanalytical psychotherapy can induce neurobiological changes. From Neuroscience which, in accordance with his thinking at the time, Freud never disregarded, the concepts of neuronal plasticity, enriched environment and the neurobiological aspects of the attachment process. From Psychoanalysis, the theory of transference, M. Mahler’s psychological evolution model, the concept of the regulating function of the self-objects and Winnicott’s holding environment concept. Together these provide a useful bridge toward the understanding of the neurobiological changes resulting from psychoanalytical psychotherapy. One concludes that psychoanalytical psychotherapy, through transference, acts as a new model of object relation and learning which furthers the development of certain brain areas, specifically, the right hemisphere, and the prefrontal and limbic cortices, which have a regulating function on affects.


2018 ◽  
Author(s):  
J. Bernardo Barahona-Corrêa ◽  
Gonçalo Cotovio ◽  
Rui M. Costa ◽  
Ricardo Ribeiro ◽  
Ana Velosa ◽  
...  

ABSTRACTBackgroundDespite claims that lesional mania is associated with right-hemisphere lesions, supporting evidence is scarce, and association with specific brain areas has not been demonstrated.AimsTo test whether focal brain lesions in lesional mania are more often right-than left-sided, and if lesions converge on areas relevant to mood regulation.MethodsWe performed a systematic literature search (PROSPERO registration CRD42016053675) on PubMed and Web-Of-Science, using terms that reflected diagnoses and structures of interest, and lesional mechanisms. Two researchers reviewed the articles separately according to PRISMA Guidelines, to select reports of adult-onset hypomania, mania or mixed state following a focal brain lesion. When available, eligible lesion images were manually traced onto the corresponding slices of MNI space, and lesion topography analyzed using standard brain atlases. Pooled-analyses of individual patient data were performed.ResultsData from 207 lesional mania patients was extracted from 110 reports. Among patients with focal lesions (N=197) more patients had lesions involving the right (84.3%) than the left (34.5%) hemisphere. Among 54 lesion images that were available, right-sided predominance of lesions was confirmed, and found to be was conserved across multiple brain regions, including the temporal lobe, fusiform gyrus and thalamus. These, in addition to several frontal lobe areas, were also identified as preferential lesion sites in comparisons with control lesions.ConclusionsPooled-analyses, based on the most comprehensive dataset of lesional mania available to date, confirm a preferential association with right-hemisphere lesions, while suggesting that several brain areas/circuits, relevant to mood regulation, are most frequently affected.


Sign in / Sign up

Export Citation Format

Share Document