scholarly journals Anthrax Edema and Lethal Toxins Differentially Target Human Lung and Blood Phagocytes

Toxins ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 464
Author(s):  
Vineet I. Patel ◽  
J. Leland Booth ◽  
Mikhail Dozmorov ◽  
Brent R. Brown ◽  
Jordan P. Metcalf

Bacillus anthracis, the causative agent of inhalation anthrax, is a serious concern as a bioterrorism weapon. The vegetative form produces two exotoxins: Lethal toxin (LT) and edema toxin (ET). We recently characterized and compared six human airway and alveolar-resident phagocyte (AARP) subsets at the transcriptional and functional levels. In this study, we examined the effects of LT and ET on these subsets and human leukocytes. AARPs and leukocytes do not express high levels of the toxin receptors, tumor endothelium marker-8 (TEM8) and capillary morphogenesis protein-2 (CMG2). Less than 20% expressed surface TEM8, while less than 15% expressed CMG2. All cell types bound or internalized protective antigen, the common component of the two toxins, in a dose-dependent manner. Most protective antigen was likely internalized via macropinocytosis. Cells were not sensitive to LT-induced apoptosis or necrosis at concentrations up to 1000 ng/mL. However, toxin exposure inhibited B. anthracis spore internalization. This inhibition was driven primarily by ET in AARPs and LT in leukocytes. These results support a model of inhalation anthrax in which spores germinate and produce toxins. ET inhibits pathogen phagocytosis by AARPs, allowing alveolar escape. In late-stage disease, LT inhibits phagocytosis by leukocytes, allowing bacterial replication in the bloodstream.

1999 ◽  
Vol 190 (3) ◽  
pp. 341-354 ◽  
Author(s):  
Margaret A. Schwarz ◽  
Jessica Kandel ◽  
Jerald Brett ◽  
Jun Li ◽  
Joanne Hayward ◽  
...  

Neovascularization is essential for growth and spread of primary and metastatic tumors. We have identified a novel cytokine, endothelial-monocyte activating polypeptide (EMAP) II, that potently inhibits tumor growth, and appears to have antiangiogenic activity. Mice implanted with Matrigel showed an intense local angiogenic response, which EMAP II blocked by 76% (P < 0.001). Neovascularization of the mouse cornea was similarly prevented by EMAP II (P < 0.003). Intraperitoneally administered EMAP II suppressed the growth of primary Lewis lung carcinomas, with a reduction in tumor volume of 65% versus controls (P < 0.003). Tumors from human breast carcinoma–derived MDA-MB 468 cells were suppressed by >80% in EMAP II–treated animals (P < 0.005). In a lung metastasis model, EMAP II blocked outgrowth of Lewis lung carcinoma macrometastases; total surface metastases were diminished by 65%, and of the 35% metastases present, ≈80% were inhibited with maximum diameter <2 mm (P < 0.002 vs. controls). In growing capillary endothelial cultures, EMAP II induced apoptosis in a time- and dose-dependent manner, whereas other cell types were unaffected. These data suggest that EMAP II is a tumor-suppressive mediator with antiangiogenic properties allowing it to target growing endothelium and limit establishment of neovasculature.


2020 ◽  
Vol 22 (1) ◽  
pp. 307
Author(s):  
Hyun-Jung Park ◽  
Ran Lee ◽  
Hyunjin Yoo ◽  
Kwonho Hong ◽  
Hyuk Song

Nonylphenol (NP) is an endocrine-disruptor chemical that negatively affects reproductive health. Testes exposure to NP results in testicular structure disruption and a reduction in testicular size and testosterone levels. However, the effects of NP on spermatogonia in testes have not been fully elucidated. In this study, the molecular mechanisms of NP in GC-1 spermatogonia (spg) cells were investigated. We found that cell viability significantly decreased and apoptosis increased in a dose-dependent manner when GC-1 spg cells were exposed to NP. Furthermore, the expression levels of the pro-apoptotic proteins increased, whereas anti-apoptosis markers decreased in NP-exposed GC-1 spg cells. We also found that NP increased reactive oxygen species (ROS) generation, suggesting that ROS-induced activation of the MAPK signaling pathway is the molecular mechanism of NP-induced apoptosis in GC-1 spg cells. Thus, NP could induce c-Jun phosphorylation; dose-dependent expression of JNK, MKK4, p53, and p38; and the subsequent inhibition of ERK1/2 and MEK1/2 phosphorylation. The genes involved in apoptosis and JNK signaling were also upregulated in GC-1 spg cells treated with NP compared to those in the controls. Our findings suggest that NP induces apoptosis through ROS/JNK signaling in GC-1 spg cells.


2006 ◽  
Vol 203 (1) ◽  
pp. 189-201 ◽  
Author(s):  
Ronit Vogt Sionov ◽  
Orly Cohen ◽  
Shlomit Kfir ◽  
Yael Zilberman ◽  
Eitan Yefenof

The mechanisms by which glucocorticoid receptor (GR) mediates glucocorticoid (GC)-induced apoptosis are unknown. We studied the role of mitochondrial GR in this process. Dexamethasone induces GR translocation to the mitochondria in GC-sensitive, but not in GC-resistant, T cell lines. In contrast, nuclear GR translocation occurs in all cell types. Thymic epithelial cells, which cause apoptosis of the PD1.6 T cell line in a GR-dependent manner, induce GR translocation to the mitochondria, but not to the nucleus, suggesting a role for mitochondrial GR in eliciting apoptosis. This hypothesis is corroborated by the finding that a GR variant exclusively expressed in the mitochondria elicits apoptosis of several cancer cell lines. A putative mitochondrial localization signal was defined to amino acids 558–580 of human GR, which lies within the NH2-terminal part of the ligand-binding domain. Altogether, our data show that mitochondrial and nuclear translocations of GR are differentially regulated, and that mitochondrial GR translocation correlates with susceptibility to GC-induced apoptosis.


2005 ◽  
Vol 18 (3) ◽  
pp. 403-415 ◽  
Author(s):  
L. Ottonello ◽  
M. Bertolotto ◽  
F. Montecucco ◽  
P. Dapino ◽  
F. Dallegri

Monocytes and macrophages play a key role in the initiation and persistence of inflammatory reactions. The possibility to interfere with the survival of these cells, once recruited and activated at sites of inflammation, is an attractive therapeutic option. Although resting monocytes are susceptible to pharmacologically induced apoptosis, no data are available about the possibility to modulate the survival of activated monocytes. The present work was planned to investigate if dexamethasone is able to promote apoptosis of human monocytes activated by immune complexes. When monocytes were cultured with immune complexes, a dose-dependent inhibition of apoptosis was observed. Dexamethasone stimulated apoptosis of resting and activated monocytes in a dose-dependent manner. Both the immune complex inhibitory activity and dexamethasone stimulatory properties depend on NF-kB/XIAP and Ras/MEK/ERK/CD95 pathways. In fact, the exposure of monocytes to immune complexes increased NF-kB activation and XIAP expression, which in turn were inhibited by dexamethasone. On the other hand, immune complex-stimulated monocytes displayed a reduced expression of CD95, which is prevented by dexamethasone, as well as by MEK inhibitor U0126. Furthermore, anti-CD95 ZB4 mAb prevented dexamethasone-induced apoptosis in immune complex-stimulated monocytes. Similarly, ZB4 inhibited dexamethasone-mediated augmentation of caspase 3 activity. The present findings suggest that Fc triggering by insoluble immune complexes result in the activation of two intracellular pathways crucial for the survival of monocytes: 1. Ras/MEK/ERK pathway responsible for the down-regulation of CD95 expression; 2. NF-kB pathway governing the expression of XIAP. Both the pathways are susceptible to inhibition by monocyte treatment with pharmacologic concentrations of dexamethasone.


2019 ◽  
Vol 13 (1) ◽  
pp. 489-496 ◽  
Author(s):  
Jun Jiang ◽  
Nanyang Zhou ◽  
Pian Ying ◽  
Ting Zhang ◽  
Ruojia Liang ◽  
...  

AbstractEmodin, a major component of rhubarb, has anti-tumor effects in a variety of cancers, influencing multiple steps of tumor development through modulating several signaling pathways. The aim of this study is to examine the effect of emodin on cell apoptosis and explore the underlying mechanisms in human endometrial cancer cells. Here we report that emodin can inhibit KLE cell proliferation and induce apoptosis in a time- and dose-dependent manner. Western blot assay found that emodin was involved in MAPK and PI3K/Akt signaling pathways. Specifically, emodin significantly suppressed the phosphorylation of AKT, and enhanced the phosphorylation of MAPK pathways. Furthermore, the generation of reactive oxygen species (ROS) was up-regulated in KLE cells upon treatment with emodin, while the anti-oxidant agent N-acetyl cysteine (NAC) can inhibit emodin-induced apoptosis and promote the activation of AKT and Bcl-2. Taken together, we revealed that emodin may induce apoptosis in KLE cells through regulating the PI3K/AKT and MAPK signaling pathways, indicating the importance of emodin as an anti-tumor agent.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Li-Hua Mu ◽  
Li-Hua Wang ◽  
Teng-Fei Yu ◽  
Yu-Ning Wang ◽  
Hong Yan ◽  
...  

Triple-negative breast cancers (TNBCs) are associated with poor patient survival because of the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expressions. Our previous studies have shown that the triterpenoid saponin AG8 from Ardisia gigantifolia stapf. inhibits the proliferation of MDA-MB-231 cells. In this study, the effects of AG8 were further analyzed in different TNBC cell types: MDA-MB-231, BT-549, and MDA-MB-157 cells. AG8 inhibited the viability of MDA-MB-231, BT-549, and MDA-MB-157 cells in a dose-dependent manner and showed stronger cytotoxicity to African American (AA) and mesenchymal (M) subtypes than Caucasian (CA) and mesenchymal stem-like (MSL) subtypes, respectively. AG8 impaired the uptake of MitoTracker Red CMXRos by the mitochondria of TNBC cells in a dose-dependent manner, and this was recovered by N-acetyl-l-cysteine (NAC). AG8 affected GSH, SOD, and MDA levels of TNBC cells, but different TNBC subtypes had different sensitivities to AG8 and NAC. In addition, we found that AG8 increased the Bax/Bcl-2 ratio and the levels of cytoplasmic cytochrome c and significantly decreased phosphorylation of ERK and AKT in BT549 and MDA-MB-157 cells. AG8 elicited its anticancer effects through ROS generation, ERK and AKT activation, and by triggering mitochondrial apoptotic pathways in TNBC cells. AG8 had selective cytotoxic effects against the AA and M TNBC subtypes and markedly induced MDA-MB-157 (AA subtype) cell apoptosis through pathways that were not associated with ROS, which was different from the other two subtypes. The underlying mechanisms should be further investigated.


2009 ◽  
Vol 610-613 ◽  
pp. 1364-1369 ◽  
Author(s):  
Zheng Li Xu ◽  
Jiao Sun ◽  
Chang Sheng Liu ◽  
Jie Wei

Nano-HAP (10-20nm) were obtained from East China University of Science and Technology. The osteoblasts were primary cultured from rat calvaria and then treated with five different concentrations(20,40,60,80,100µg/ml) of nano-HAP, the osteoblasts without nano-HAP was used as control group. Inhibition ratio, apoptotic rate were evaluated by MTT assay and flow cytometry (FCM), respectively. The specific surface area of nano-HAP was detected by BET. All date were expressed as mean ± standard deviation.Statistical analysis was performed by t test using software SPSS11.0 for Windows. The results indicated that the nano-HAP could inhibit the growth of osteoblasts in a dose-dependent manner. When the concentrations of nano-HAP were 20, 40, 60, 80, 100µg/ml, the inhibition ratio were 2.8%, 22.2%, 26.9%, 38% and 47.7%, and the apoptotic rate were 4.63%, 6.75%, 9.47%, 11.49%, 17.22%, respectively, which were obviously higher than that of control group. The nano-HAP significantly induced apoptosis in osteoblasts. There were the same tendency that the apoptotic and inhibition ratio of osteoblasts were rising with the increasing of the concentration of the nano-HAP. The specific surface area of nano-HAP was 148.140m2/g.


Author(s):  
Guoyong Jia ◽  
Hongna Yang ◽  
Zengyan Diao ◽  
Ying Liu ◽  
Congcong Sun

Alzheimer’s disease (AD) is a progressive, neurodegenerative disease. Accumulating evidence suggests that protein isoaspartate methyltransferase 1 (PCMT1) is highly expressed in brain tissue (substantia nigra, blue plaque, paraventricular nucleus). In this study, we investigated the effect of neural stem cell conditioned medium alleviates Aβ25-35 damage to SH-SY5Y cells by PCMT1/MST1 pathway. Results demonstrated that Aβ25-35 significantly decreased the cell viability in time and dose dependent manner. However, Neural stem cell-complete medium (NSC-CPM) or NSC-CDM had inhibitory effect on toxicity when fibrillation of Aβ25-35 occurred in their presence and NSC-CDM had a better inhibitor result. An increase of the PCMT1 expression levels was found in Aβ25-35 + NSC-CDM group. sh-PCMT1 significantly reduced the PCMT1, the cell viability and inhibited the protective effect; induced apoptosis and increased the expression of p-MST1. Overexpression of PCMT1 group reversed the effect of Aβ25-35 inhibited the cell viability and Aβ25-35 induced the apoptosis. In conclusion, NSC-CDM corrects the damage of Aβ25-35 to cells by increasing PCMT1, reducing MST phosphorylation.


Pharmacology ◽  
2019 ◽  
Vol 105 (3-4) ◽  
pp. 164-172
Author(s):  
Shuangbo Fan ◽  
Qian Xu ◽  
Liang Wang ◽  
Yulin Wan ◽  
Sheng Qiu

SMBA1 (small-molecule Bax agonists 1), a small molecular activator of Bax, is a potential anti-tumour agent. In the present study, we investigated the biological effects of SMBA1 on glioblastoma (GBM) cells. SMBA1 reduced the viabilities of U87MG, U251 and T98G cells in a time- and dose-dependent manner. Moreover, treatment with SMBA1 induced cell cycle arrest at the G2/M phase transition, accompanied by the downregulation of Cdc25c and cyclin B1 and the upregulation of p21. SMBA1 also induced apoptosis of GBM cells in a dose-dependent manner. Mechanistically, SMBA1 induced apoptosis via the intrinsic pathway. Silencing of Bax or ectopic expression of Bcl-2 significantly inhibited SMBA1-induced apoptosis. Moreover, SMBA1 inhibited the growth of U87MG xenograft tumours in vivo. Overall, SMBA1 shows anti-proliferative effects against GBM cells through activation of the intrinsic apoptosis pathway.


2020 ◽  
Vol 20 (2) ◽  
pp. 157-166
Author(s):  
Yuan Yang ◽  
Jin Huang ◽  
Jianzhong Li ◽  
Huansheng Yang ◽  
Yulong Yin

Background: Stearic acid (SA), a saturated long-chain fatty acid consisting of 18 carbon atoms, is widely found in feed ingredients, such as corn, soybeans, and wheat. However, the roles of SA in the renewal of intestinal epithelial cells remain unclear. Methods and Results: In the present study, we found that 0.01-0.1 mM SA promoted IPEC-J2 cell differentiation and did not affect IPEC-J2 cell viability. In addition, the results showed that the viability of IPEC-J2 cells was inhibited by SA in a time- and dose-dependent manner at high concentrations. Flow cytometry and western blot analysis suggested that SA induced apoptosis, autophagy and ER stress in cells. In addition, the amounts of triglyceride were significantly increased upon challenge with SA. Moreover, the decrease in the viability of cells induced by SA could be attenuated by 4-PBA, an inhibitor of ER stress. Conclusion: In summary, SA accelerated IPEC-J2 cell differentiation at 0.01-0.1 mM. Furthermore, SA induced IPEC-J2 cell apoptosis and autophagy by causing ER stress.


Sign in / Sign up

Export Citation Format

Share Document