scholarly journals Influence of Irradiance and Temperature on the Virus MpoV-45T Infecting the Arctic Picophytoplankter Micromonas polaris

Viruses ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 676 ◽  
Author(s):  
Gonçalo Piedade ◽  
Ella Wesdorp ◽  
Elena Montenegro-Borbolla ◽  
Douwe Maat ◽  
Corina Brussaard

Arctic marine ecosystems are currently undergoing rapid changes in temperature and light availability. Picophytoplankton, such as Micromonas polaris, are predicted to benefit from such changes. However, little is known about how these environmental changes affect the viruses that exert a strong mortality pressure on these small but omnipresent algae. Here we report on one-step infection experiments, combined with measurements of host physiology and viability, with 2 strains of M. polaris and the virus MpoV-45T under 3 light intensities (5, 60 and 160 μmol quanta m−2 s−1), 2 light period regimes (16:8 and 24:0 h light:dark cycle) and 2 temperatures (3 and 7 °C). Our results show that low light intensity (16:8 h light:dark) delayed the decline in photosynthetic efficiency and cell lysis, while decreasing burst size by 46%. In contrast, continuous light (24:0 h light:dark) shortened the latent period by 5 h for all light intensities, and even increased the maximum virus production rate and burst size under low light (by 157 and 69%, respectively). Higher temperature (7 °C vs 3 °C) led to earlier cell lysis and increased burst size (by 19%), except for the low light conditions. These findings demonstrate the ecological importance of light in combination with temperature as a controlling factor for Arctic phytoplankton host and virus dynamics seasonally, even more so in the light of global warming.

2021 ◽  
Vol 12 ◽  
Author(s):  
Chanaka Premarathne ◽  
Zhijian Jiang ◽  
Jialu He ◽  
Yang Fang ◽  
Qiming Chen ◽  
...  

Eutrophication, dredging, agricultural and urban runoffs, and epiphyte overgrowth could reduce light availability for seagrass. This may affect “blue carbon” stocks in seagrass beds. However, little research is available on the effect of light intensities on carbon sequestration capacity in seagrass beds, especially small-bodied seagrasses. The dominant seagrass Halophila beccarii, a vulnerable species on the IUCN Red List, was cultured in different light intensities to examine the response of vegetation and sediment carbon in seagrass beds. The results showed that low light significantly reduced leaf length and above-ground biomass, while carbon content in both above-ground and below-ground tissues were not affected. Low light reduced both the above-ground biomass carbon and the total biomass carbon. Interestingly, while under saturating light conditions, the subsurface and surface carbon content was similar, under low light conditions, subsurface sediment carbon was significantly lower than the surface content. The reduction of subsurface sediment carbon might be caused by less release flux of dissolved organic carbon from roots in low light. Taken together, these results indicate that reduced light intensities, to which these meadows are exposed to, will reduce carbon sequestration capacity in seagrass beds. Measures should be taken to eliminate the input of nutrients on seagrass meadows and dredging activities to maintain the “blue carbon” storage service by enhancing light penetration into seagrass.


2000 ◽  
Vol 66 (8) ◽  
pp. 3387-3392 ◽  
Author(s):  
Melanie Kaebernick ◽  
Brett A. Neilan ◽  
Thomas Börner ◽  
Elke Dittmann

ABSTRACT Microcystin, a hepatotoxin known to be the cause of animal and human deaths, is produced by the bloom-forming cyanobacteriumMicrocystis aeruginosa in freshwater bodies worldwide. The toxin is produced nonribosomally via a multifunctional enzyme complex, consisting of both peptide synthetase and polyketide synthase modules coded for by the mcy gene cluster. The recent identification of the mcy genes in the production of microcystin synthetase for the first time provides an avenue to study the regulation of microcystin production at a genetic level. In this study, M. aeruginosa PCC7806 was grown either under continuous light of various intensities or under low light with subsequent short-term exposure to different light intensities and qualities and various stress factors. RNase protection assays were employed to observe the level of mcyB and mcyDtranscription under each condition. Both mcyB andmcyD transcript levels were increased under high light intensities and red light. Blue light and certain artificial stress factors (methylviologen and NaCl) led to reduced transcript amounts. There appeared to be two light thresholds, between dark and low light (16 μmol of photons m−2 s−1), and medium (31 μmol of photons m−2 s−1) and high light (68 μmol of photons m−2 s−1), at which a significant increase in transcription occurred. Our findings show that the effect of light on microcystin synthetase production is due to light quality and is initiated at certain threshold intensities, which are not necessarily reflected by observed intracellular toxin bioactivity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jang-Mu Heo ◽  
Seong-Su Kim ◽  
Sung-Ho Kang ◽  
Eun Jin Yang ◽  
Ki-Tae Park ◽  
...  

AbstractThe western Arctic Ocean (WAO) has experienced increased heat transport into the region, sea-ice reduction, and changes to the WAO nitrous oxide (N2O) cycles from greenhouse gases. We investigated WAO N2O dynamics through an intensive and precise N2O survey during the open-water season of summer 2017. The effects of physical processes (i.e., solubility and advection) were dominant in both the surface (0–50 m) and deep layers (200–2200 m) of the northern Chukchi Sea with an under-saturation of N2O. By contrast, both the surface layer (0–50 m) of the southern Chukchi Sea and the intermediate (50–200 m) layer of the northern Chukchi Sea were significantly influenced by biogeochemically derived N2O production (i.e., through nitrification), with N2O over-saturation. During summer 2017, the southern region acted as a source of atmospheric N2O (mean: + 2.3 ± 2.7 μmol N2O m−2 day−1), whereas the northern region acted as a sink (mean − 1.3 ± 1.5 μmol N2O m−2 day−1). If Arctic environmental changes continue to accelerate and consequently drive the productivity of the Arctic Ocean, the WAO may become a N2O “hot spot”, and therefore, a key region requiring continued observations to both understand N2O dynamics and possibly predict their future changes.


2007 ◽  
Vol 13 ◽  
pp. 149-168 ◽  
Author(s):  
Erik J. Ekdahl

Average global temperatures are predicted to rise over the next century and changes in precipitation, humidity, and drought frequency will likely accompany this global warming. Understanding associated changes in continental precipitation and temperature patterns in response to global change is an important component of long-range environmental planning. For example, agricultural management plans that account for decreased precipitation over time will be less susceptible to the effects of drought through implementation of water conservation techniques.A detailed understanding of environmental response to past climate change is key to understanding environmental changes associated with global climate change. To this end, diatoms are sensitive to a variety of limnologic parameters, including nutrient concentration, light availability, and the ionic concentration and composition of the waters that they live in (e.g. salinity). Diatoms from numerous environments have been used to reconstruct paleosalinity levels, which in turn have been used as a proxy records for regional and local paleoprecipitation. Long-term records of salinity or paleoprecipitation are valuable in reconstructing Quaternary paleoclimate, and are important in terms of developing mitigation strategies for future global climate change. High-resolution paleoclimate records are also important in groundtruthing global climate simulations, especially in regions where the consequences of global warming may be severe.


In a tank filled with a suspension of indian ink in tap water, a population of Daphnia magna will undergo a complete cycle of vertical migration when an overhead light source is cycli­cally varied in intensity. A ‘dawn rise’ to the surface at low intensity is followed by the descent of the animals to a characteristic maximum depth. The animals rise to the surface again as the light decreases, and finally show a typical midnight sinking. The light intensities at the level of the animals in this experiment are of the same order as those which have been reported in field observations; the time course of the movement also repeats the natural conditions in the field. The process is independent of the duration of the cycle and is related only to the variation in overhead light intensity. At low light intensity the movement of the animal is determined solely by positive photo-kinesis; the dawn rise is a manifestation of this, and is independent of the direction of the light. At high light intensities there is an orientation response which is superimposed upon an alternating positive (photokinetic) phase and a negative phase during which movement is inhibited. The fully oriented animal shows a special type of positive and negative phototaxis, moving towards the light at reduced light intensities and away from it when the light intensity is increased. In this condition it follows a zone of optimum light intensity with some exactness. Experiments show that an animal in this fully oriented condition will respond to the slow changes of intensity characteristic of the diurnal cycle, while being little affected by tran­sient changes of considerable magnitude.


2015 ◽  
Vol 28 (10) ◽  
pp. 4027-4033 ◽  
Author(s):  
Doo-Sun R. Park ◽  
Sukyoung Lee ◽  
Steven B. Feldstein

Abstract Wintertime Arctic sea ice extent has been declining since the late twentieth century, particularly over the Atlantic sector that encompasses the Barents–Kara Seas and Baffin Bay. This sea ice decline is attributable to various Arctic environmental changes, such as enhanced downward infrared (IR) radiation, preseason sea ice reduction, enhanced inflow of warm Atlantic water into the Arctic Ocean, and sea ice export. However, their relative contributions are uncertain. Utilizing ERA-Interim and satellite-based data, it is shown here that a positive trend of downward IR radiation accounts for nearly half of the sea ice concentration (SIC) decline during the 1979–2011 winter over the Atlantic sector. Furthermore, the study shows that the Arctic downward IR radiation increase is driven by horizontal atmospheric water flux and warm air advection into the Arctic, not by evaporation from the Arctic Ocean. These findings suggest that most of the winter SIC trends can be attributed to changes in the large-scale atmospheric circulations.


Sign in / Sign up

Export Citation Format

Share Document