scholarly journals New Insights into the Susceptibility of Immunocompetent Mice to Usutu Virus

Viruses ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 189 ◽  
Author(s):  
Emna Benzarti ◽  
Michaël Sarlet ◽  
Mathieu Franssen ◽  
Daniel Desmecht ◽  
Jonas Schmidt-Chanasit ◽  
...  

Usutu virus (USUV) is a mosquito-borne flavivirus that shares many similarities with the closely related West Nile virus (WNV) in terms of ecology and clinical manifestations. Initially distributed in Africa, USUV emerged in Italy in 1996 and managed to co-circulate with WNV in many European countries in a similar mosquito–bird life cycle. The rapid geographic spread of USUV, the seasonal mass mortalities it causes in the European avifauna, and the increasing number of infections with neurological disease both in healthy and immunocompromised humans has stimulated interest in infection studies to delineate USUV pathogenesis. Here, we assessed the pathogenicity of two USUV isolates from a recent Belgian outbreak in immunocompetent mice. The intradermal injection of USUV gave rise to disorientation and paraplegia and was associated with neuronal death in the brain and spinal cord in a single mouse. Intranasal inoculation of USUV could also establish the infection; viral RNA was detected in the brain 15 days post-infection. Overall, this pilot study probes the suitability of this murine model for the study of USUV neuroinvasiveness and the possibility of direct transmission in mammals.

2009 ◽  
Vol 2 (4) ◽  
pp. 205-211 ◽  
Author(s):  
Chantal Simon

Multiple sclerosis is a chronic disabling neurological disease due to an autoimmune process of unknown cause. It is characterized by the formation of patches of demyelination (plaques) throughout the brain and spinal cord. There is no peripheral nerve involvement.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Saneea Almas ◽  
Jesse Vance ◽  
Teresa Baker ◽  
Thomas Hale

Multiple Sclerosis (MS) is an autoimmune neurological disease characterized by inflammation of the brain and spinal cord. Relapsing-Remitting MS is characterized by acute attacks followed by remission. Treatment is aimed at halting these attacks; therapy may last for months to years. Because MS disproportionately affects females and commonly begins during the childbearing years, clinicians treat pregnant or nursing MS patients. The intent of this review is to perform an in-depth analysis into the safety of drugs used in breastfeeding women with MS. This paper is composed of several drugs used in the treatment of MS and current research regarding their safety in breastfeeding including immunomodulators, immunosuppressants, monoclonal antibodies, corticosteroids, and drugs used for symptomatic treatment. Typically, some medications are large polar molecules which often do not pass into the milk in clinically relevant amounts. For this reason, interferon beta is likely safe for the infant when given to a breastfeeding mother. However, other drugs with particularly dangerous side effects may not be recommended. While treatment options are available and some data from clinical studies does exist, there continues to be a need for investigation and ongoing review of the medications used in breastfeeding mothers.


2021 ◽  
Vol 2 (8) ◽  
pp. 27-31
Author(s):  
Leonid B. Likhterman ◽  

Frequent dissociations between morphological substrate and clinical manifestations of the disorder were analyzed. Noninvasive neuroimaging techniques created the opportunity for the life-time verification of incidental findings, which resulted in development of the new area, preventive neurosurgery. Systematization, diagnosis, and criteria for the surgical treatment of incidental findings in neurosurgery are reported. It had been emphasized that while the brain and spinal cord disorder recognition during the preclinical period can only be accomplished based on imaging data, the decision on the management and treatment strategy in apparently healthy individuals has to be clinical-philosophical, and has to be made in view of the subsequent quality of life.


GYNECOLOGY ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. 84-86
Author(s):  
Sergei P. Sinchikhin ◽  
Sarkis G. Magakyan ◽  
Oganes G. Magakyan

Relevance.A neoplasm originated from the myelonic sheath of the nerve trunk is called neurinoma or neurilemmoma, neurinoma, schwannoglioma, schwannoma. This tumor can cause compression and dysfunction of adjacent tissues and organs. The most common are the auditory nerve neurinomas (1 case per 100 000 population per year), the brain and spinal cord neurinomas are rare. In the world literature, there is no information on the occurrences of this tumor in the pelvic region. Description.Presented below is a clinical observation of a 30-year-old patient who was scheduled for myomectomy. During laparoscopy, an unusual tumor of the small pelvis was found and radically removed. A morphological study allowed to identify the remote neoplasm as a neuroma. Conclusion.The presented practical case shows that any tumor can hide under a clinical mask of another disease. The qualification of the doctor performing laparoscopic myomectomy should be sufficient to carry out, if necessary, another surgical volume.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marie-Hardy Laura ◽  
Cantaut-Belarif Yasmine ◽  
Pietton Raphaël ◽  
Slimani Lotfi ◽  
Pascal-Moussellard Hugues

AbstractCerebrospinal fluid (CSF) circulation relies on the beating of motile cilia projecting in the lumen of the brain and spinal cord cavities Mutations in genes involved in cilia motility disturb cerebrospinal fluid circulation and result in scoliosis-like deformities of the spine in juvenile zebrafish. However, these defects in spine alignment have not been validated with clinical criteria used to diagnose adolescent idiopathic scoliosis (AIS). The aim of this study was to describe, using orthopaedic criteria the spinal deformities of a zebrafish mutant model of AIS targeting a gene involved in cilia polarity and motility, cfap298tm304. The zebrafish mutant line cfap298tm304, exhibiting alteration of CSF flow due to defective cilia motility, was raised to the juvenile stage. The analysis of mutant animals was based on micro-computed tomography (micro-CT), which was conducted in a QUANTUM FX CALIPER, with a 59 µm-30 mm protocol. 63% of the cfap298tm304 zebrafish analyzed presented a three-dimensional deformity of the spine, that was evolutive during the juvenile phase, more frequent in females, with a right convexity, a rotational component and involving at least one dislocation. We confirm here that cfap298tm304 scoliotic individuals display a typical AIS phenotype, with orthopedic criteria mirroring patient’s diagnosis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shaona Acharjee ◽  
Paul M. K. Gordon ◽  
Benjamin H. Lee ◽  
Justin Read ◽  
Matthew L. Workentine ◽  
...  

AbstractMicroglia play an important role in the pathogenesis of multiple sclerosis and the mouse model of MS, experimental autoimmune encephalomyelitis (EAE). To more fully understand the role of microglia in EAE we characterized microglial transcriptomes before the onset of motor symptoms (pre-onset) and during symptomatic EAE. We compared the transcriptome in brain, where behavioral changes are initiated, and spinal cord, where damage is revealed as motor and sensory deficits. We used a RiboTag strategy to characterize ribosome-bound mRNA only in microglia without incurring possible transcriptional changes after cell isolation. Brain and spinal cord samples clustered separately at both stages of EAE, indicating regional heterogeneity. Differences in gene expression were observed in the brain and spinal cord of pre-onset and symptomatic animals with most profound effects in the spinal cord of symptomatic animals. Canonical pathway analysis revealed changes in neuroinflammatory pathways, immune functions and enhanced cell division in both pre-onset and symptomatic brain and spinal cord. We also observed a continuum of many pathways at pre-onset stage that continue into the symptomatic stage of EAE. Our results provide additional evidence of regional and temporal heterogeneity in microglial gene expression patterns that may help in understanding mechanisms underlying various symptomology in MS.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii41-ii41
Author(s):  
Junjie Zhen ◽  
Lei Wen ◽  
Shaoqun Li ◽  
Mingyao Lai ◽  
Changguo Shan ◽  
...  

Abstract BACKGROUND According to EANO-ESMO clinical practice guidelines, the MRI findings of LM are divided into 4 types, namely linear enhancement (type A), nodular enhancement (type B), linear combined with nodular enhancement (type C), and sign of hydrocephalus (type D). METHODS The MRI features of brain and spinal cord in patients diagnosed with NSCLC-LM in Guangdong Sanjiu Brain Hospital from 2010 until 2019 were investigated, and then were classified into 4 types. The imaging features were analyzed. RESULTS A total of 80 patients were enrolled in the study. The median age of the patients was 53.5 years old, and the median time from the initial diagnosis to the confirmed diagnosis of LM was 11.6 months. The results of enhanced MRI examination of the brain in 79 cases showed that the number of cases with enhancements of type A, B, C and D were 50 (63.3%), 0, 26 (32.9%) and 3 (3.8%), respectively, and that LM with metastases to the brain parenchyma was found in 42 cases (53.2%). The results of enhanced MRI examination of spinal cord in 59 cases showed that there were only enhancements of type A and C in 40 cases (67.8%) and 3 cases (5.0%), and no enhancement sign in the other 16 cases (27.2%). CONCLUSION MRI examination of brain and spinal cord will improve the detection rate of LM. The MRI features of NSCLC-LM in real world are mainly characterized by the linear enhancements of brain and spinal cord, followed by linear combined with nodular enhancement. The enhancements of type B and type D are rare in clinic. Almost half of the patients have LM and metastases to the brain parenchyma. Therefore, the differentiation of tumor metastases is needed to be paid attention to for the early diagnosis and the formulation of reasonable treatment plans.


1917 ◽  
Vol 25 (4) ◽  
pp. 557-580 ◽  
Author(s):  
Carroll G. Bull

Streptococci cultivated from the tonsils of thirty-two cases of poliomyelitis were used to inoculate various laboratory animals. In no case was a condition induced resembling poliomyelitis clinically or pathologically in guinea pigs, dogs, cats, rabbits, or monkeys. On the other hand, a considerable percentage of the rabbits and a smaller percentage of some of the other animals developed lesions due to streptococci. These lesions consisted of meningitis, meningo-encephalitis, abscess of the brain, arthritis, tenosynovitis, myositis, abscess of the kidney, endocarditis, pericarditis, and neuritis. No distinction in the character or frequency of the lesions could be determined between the streptococci derived from poliomyelitic patients and from other sources. Streptococci isolated from the poliomyelitic brain and spinal cord of monkeys which succumbed to inoculation with the filtered virus failed to induce in monkeys any paralysis or the characteristic histological changes of poliomyelitis. These streptococci are regarded as secondary bacterial invaders of the nervous organs. Monkeys which have recovered from infection with streptococci derived from cases of poliomyelitis are not protected from infection with the filtered virus, and their blood does not neutralize the filtered virus in vitro. We have failed to detect any etiologic or pathologic relationship between streptococci and epidemic poliomyelitis in man or true experimental poliomyelitis in the monkey.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Song Cao ◽  
Daniel W. Fisher ◽  
Guadalupe Rodriguez ◽  
Tian Yu ◽  
Hongxin Dong

Abstract Background The role of microglia in Alzheimer’s disease (AD) pathogenesis is becoming increasingly important, as activation of these cell types likely contributes to both pathological and protective processes associated with all phases of the disease. During early AD pathogenesis, one of the first areas of degeneration is the locus coeruleus (LC), which provides broad innervation of the central nervous system and facilitates norepinephrine (NE) transmission. Though the LC-NE is likely to influence microglial dynamics, it is unclear how these systems change with AD compared to otherwise healthy aging. Methods In this study, we evaluated the dynamic changes of neuroinflammation and neurodegeneration in the LC-NE system in the brain and spinal cord of APP/PS1 mice and aged WT mice using immunofluorescence and ELISA. Results Our results demonstrated increased expression of inflammatory cytokines and microglial activation observed in the cortex, hippocampus, and spinal cord of APP/PS1 compared to WT mice. LC-NE neuron and fiber loss as well as reduced norepinephrine transporter (NET) expression was more evident in APP/PS1 mice, although NE levels were similar between 12-month-old APP/PS1 and WT mice. Notably, the degree of microglial activation, LC-NE nerve fiber loss, and NET reduction in the brain and spinal cord were more severe in 12-month-old APP/PS1 compared to 12- and 24-month-old WT mice. Conclusion These results suggest that elevated neuroinflammation and microglial activation in the brain and spinal cord of APP/PS1 mice correlate with significant degeneration of the LC-NE system.


Sign in / Sign up

Export Citation Format

Share Document